BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15840721)

  • 1. Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion.
    Bulteau AL; Lundberg KC; Ikeda-Saito M; Isaya G; Szweda LI
    Proc Natl Acad Sci U S A; 2005 Apr; 102(17):5987-91. PubMed ID: 15840721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-dependent modulation of aconitase activity in intact mitochondria.
    Bulteau AL; Ikeda-Saito M; Szweda LI
    Biochemistry; 2003 Dec; 42(50):14846-55. PubMed ID: 14674759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity.
    Bulteau AL; O'Neill HA; Kennedy MC; Ikeda-Saito M; Isaya G; Szweda LI
    Science; 2004 Jul; 305(5681):242-5. PubMed ID: 15247478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion.
    Sadek HA; Humphries KM; Szweda PA; Szweda LI
    Arch Biochem Biophys; 2002 Oct; 406(2):222-8. PubMed ID: 12361710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation.
    Vasquez-Vivar J; Kalyanaraman B; Kennedy MC
    J Biol Chem; 2000 May; 275(19):14064-9. PubMed ID: 10799480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism.
    Bota DA; Davies KJ
    Nat Cell Biol; 2002 Sep; 4(9):674-80. PubMed ID: 12198491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of iron in the activation-inactivation of aconitase.
    Kennedy MC; Emptage MH; Dreyer JL; Beinert H
    J Biol Chem; 1983 Sep; 258(18):11098-105. PubMed ID: 6309829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox sensitive human mitochondrial aconitase and its interaction with frataxin: In vitro and in silico studies confirm that it takes two to tango.
    Mansilla S; Tórtora V; Pignataro F; Sastre S; Castro I; Chiribao ML; Robello C; Zeida A; Santos J; Castro L
    Free Radic Biol Med; 2023 Mar; 197():71-84. PubMed ID: 36738801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.
    Lushchak OV; Piroddi M; Galli F; Lushchak VI
    Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart.
    Delaval E; Perichon M; Friguet B
    Eur J Biochem; 2004 Nov; 271(22):4559-64. PubMed ID: 15560797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation.
    Tórtora V; Quijano C; Freeman B; Radi R; Castro L
    Free Radic Biol Med; 2007 Apr; 42(7):1075-88. PubMed ID: 17349934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm, Crassostrea virginica.
    Sanni B; Williams K; Sokolov EP; Sokolova IM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):101-12. PubMed ID: 17869588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide radical and iron modulate aconitase activity in mammalian cells.
    Gardner PR; Raineri I; Epstein LB; White CW
    J Biol Chem; 1995 Jun; 270(22):13399-405. PubMed ID: 7768942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage during aging targets mitochondrial aconitase.
    Yan LJ; Levine RL; Sohal RS
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11168-72. PubMed ID: 9326580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage.
    Hoerter J; Gonzalez-Barroso MD; Couplan E; Mateo P; Gelly C; Cassard-Doulcier AM; Diolez P; Bouillaud F
    Circulation; 2004 Aug; 110(5):528-33. PubMed ID: 15262832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide sensitivity of the aconitases.
    Gardner PR; Costantino G; Szabó C; Salzman AL
    J Biol Chem; 1997 Oct; 272(40):25071-6. PubMed ID: 9312115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiols protect the inhibition of myocardial aconitase by peroxynitrite.
    Cheung PY; Danial H; Jong J; Schulz R
    Arch Biochem Biophys; 1998 Feb; 350(1):104-8. PubMed ID: 9466826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependant protective effects of mangenese(III) tetrakis (1-methyl-4-pyridyl) porphyrin on mitochondrial function following renal ischemia-reperfusion injury.
    Nilakantan V; Liang HL; Rajesh S; Mortensen J; Chandran K
    Free Radic Res; 2010 Jul; 44(7):773-82. PubMed ID: 20380592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells.
    Ilangovan G; Venkatakrishnan CD; Bratasz A; Osinbowale S; Cardounel AJ; Zweier JL; Kuppusamy P
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C313-24. PubMed ID: 16162655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.