These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Accelerated glycolysis and greater postischemic dysfunction in hypertrophied rat hearts are independent of coronary flow. Wambolt RB; Grist M; Bondy GP; Allard MF Can J Cardiol; 2001 Aug; 17(8):889-94. PubMed ID: 11521131 [TBL] [Abstract][Full Text] [Related]
4. Demand-induced ischemia in volume expanded isolated rat heart; the effect of dichloroacetate and trimetazidine. Skierczynska A; Beresewicz A J Physiol Pharmacol; 2010 Apr; 61(2):153-62. PubMed ID: 20436215 [TBL] [Abstract][Full Text] [Related]
5. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion. Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855 [TBL] [Abstract][Full Text] [Related]
6. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Lopaschuk GD; Barr R; Thomas PD; Dyck JR Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392 [TBL] [Abstract][Full Text] [Related]
7. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts. Onay-Besikci A; Guner S; Arioglu E; Ozakca I; Ozcelikay AT; Altan VM Can J Physiol Pharmacol; 2007 May; 85(5):527-35. PubMed ID: 17632588 [TBL] [Abstract][Full Text] [Related]
8. Recovery of glycolysis and oxidative metabolism during postischemic reperfusion of hypertrophied rat hearts. Schönekess BO; Allard MF; Lopaschuk GD Am J Physiol; 1996 Aug; 271(2 Pt 2):H798-805. PubMed ID: 8770125 [TBL] [Abstract][Full Text] [Related]
9. Dichloroacetate improves postischemic function of hypertrophied rat hearts. Wambolt RB; Lopaschuk GD; Brownsey RW; Allard MF J Am Coll Cardiol; 2000 Oct; 36(4):1378-85. PubMed ID: 11028498 [TBL] [Abstract][Full Text] [Related]
10. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Broderick TL; Quinney HA; Lopaschuk GD Cardiovasc Res; 1995 Mar; 29(3):373-8. PubMed ID: 7781011 [TBL] [Abstract][Full Text] [Related]
11. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Kantor PF; Lucien A; Kozak R; Lopaschuk GD Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420 [TBL] [Abstract][Full Text] [Related]
12. Reduced tolerance of global ischemia in the hypertrophied heart. Effect of coronary flow regulation during reperfusion on postischemic recovery. Yamamoto H; Yamamoto F; Goh K; Sasajima T Jpn J Thorac Cardiovasc Surg; 2001 May; 49(5):287-95. PubMed ID: 11431947 [TBL] [Abstract][Full Text] [Related]
13. Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low-flow ischemia. Wambolt RB; Henning SL; English DR; Dyachkova Y; Lopaschuk GD; Allard MF J Mol Cell Cardiol; 1999 Mar; 31(3):493-502. PubMed ID: 10198181 [TBL] [Abstract][Full Text] [Related]
14. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401 [TBL] [Abstract][Full Text] [Related]
15. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. MacInnes A; Fairman DA; Binding P; Rhodes Ja; Wyatt MJ; Phelan A; Haddock PS; Karran EH Circ Res; 2003 Aug; 93(3):e26-32. PubMed ID: 12869391 [TBL] [Abstract][Full Text] [Related]
16. Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Leong HS; Grist M; Parsons H; Wambolt RB; Lopaschuk GD; Brownsey R; Allard MF Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1039-45. PubMed ID: 11934668 [TBL] [Abstract][Full Text] [Related]
17. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155 [TBL] [Abstract][Full Text] [Related]
18. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated? Lopaschuk GD Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307 [TBL] [Abstract][Full Text] [Related]