These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 15840919)

  • 21. A low-absorption x-ray energy filter for small-scale applications.
    Fredenberg E; Cederström B; Nillius P; Ribbing C; Karlsson S; Danielsson M
    Opt Express; 2009 Jul; 17(14):11388-98. PubMed ID: 19582053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffraction of partially coherent X-rays in clessidra prism arrays.
    De Caro L; Jark W; Menk RH; Matteucci M
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):606-11. PubMed ID: 18955767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.
    Vila-Comamala J; Gorelick S; Färm E; Kewish CM; Diaz A; Barrett R; Guzenko VA; Ritala M; David C
    Opt Express; 2011 Jan; 19(1):175-84. PubMed ID: 21263555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Staircase array of inclined refractive multi-lenses for large field of view pixel super-resolution scanning transmission hard X-ray microscopy.
    Mamyrbayev T; Ikematsu K; Takano H; Wu Y; Kimura K; Doll P; Last A; Momose A; Meyer P
    J Synchrotron Radiat; 2021 May; 28(Pt 3):732-740. PubMed ID: 33949982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-plane focusing of 30 keV undulator radiation.
    Elleaume P
    J Synchrotron Radiat; 1998 Jan; 5(Pt 1):1-5. PubMed ID: 16687793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polycapillary-optics-based micro-XANES and micro-EXAFS at a third-generation bending-magnet beamline.
    Silversmit G; Vekemans B; Nikitenko S; Bras W; Czhech V; Zaray G; Szaloki I; Vincze L
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):237-46. PubMed ID: 19240336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-Ray microanalytical techniques based on synchrotron radiation.
    Snigireva I; Snigirev A
    J Environ Monit; 2006 Jan; 8(1):33-42. PubMed ID: 16395457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.
    Antipov S; Baryshev SV; Butler JE; Antipova O; Liu Z; Stoupin S
    J Synchrotron Radiat; 2016 Jan; 23(1):163-8. PubMed ID: 26698059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses.
    Schroer CG; Lengeler B
    Phys Rev Lett; 2005 Feb; 94(5):054802. PubMed ID: 15783651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of single element errors in planar parabolic compound refractive lenses.
    Andrejczuk A; Krzywiński J; Sakurai Y; Itou M
    J Synchrotron Radiat; 2010 Sep; 17(5):616-23. PubMed ID: 20724783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses.
    Polikarpov M; Snigireva I; Snigirev A
    J Synchrotron Radiat; 2014 May; 21(Pt 3):484-7. PubMed ID: 24763636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging.
    Sun T; Zhang M; Liu Z; Zhang Z; Li G; Ma Y; Du X; Jia Q; Chen Y; Yuan Q; Huang W; Zhu P; Ding X
    J Synchrotron Radiat; 2009 Jan; 16(Pt 1):116-8. PubMed ID: 19096183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kirkpatrick-Baez mirrors to focus hard X-rays in two dimensions as fabricated, tested and installed at the Advanced Photon Source.
    Kujala N; Marathe S; Shu D; Shi B; Qian J; Maxey E; Finney L; Macrander A; Assoufid L
    J Synchrotron Radiat; 2014 Jul; 21(Pt 4):662-8. PubMed ID: 24971959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffractive-refractive optics in the Laue case: first experiment.
    Hrdý J; Mocella V; Oberta P; Peverini L; Potlovskiy K
    J Synchrotron Radiat; 2006 Sep; 13(Pt 5):392-6. PubMed ID: 16924135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-aperture refractive lenses for momentum-resolved spectroscopy with hard X-rays.
    Fukui H; Simon M; Nazmov V; Mohr J; Evans-Lutterodt K; Stein A; Baron AQ
    J Synchrotron Radiat; 2013 Jul; 20(Pt 4):591-5. PubMed ID: 23765301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspherical lens shapes for focusing synchrotron beams.
    Sanchez del Rio M; Alianelli L
    J Synchrotron Radiat; 2012 May; 19(Pt 3):366-74. PubMed ID: 22514171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On easily tunable wide-bandpass X-ray monochromators based on refraction in arrays of prisms.
    Jark W
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):492-6. PubMed ID: 22713879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A planar parabolic refractive nickel lens for high-energy X-rays.
    Andrejczuk A; Nagamine M; Sakurai Y; Itou M
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):57-60. PubMed ID: 24365916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses.
    Hristov D; Maltz J
    Phys Med Biol; 2008 Feb; 53(3):515-27. PubMed ID: 18199899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.