These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1584135)

  • 1. Neutron induced brachytherapy: a combination of neutron capture therapy and brachytherapy.
    Shih JL; Brugger RM
    Med Phys; 1992; 19(2):369-75. PubMed ID: 1584135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron capture therapy with 235U seeds.
    Liu HB; Brugger RM; Shih JL
    Med Phys; 1992; 19(3):705-8. PubMed ID: 1508111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.
    Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H
    Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of augmentation of 252Cf implant by 10B and 157Gd neutron capture.
    Wierzbicki JG; Maruyama Y; Porter AT
    Med Phys; 1994 Jun; 21(6):787-90. PubMed ID: 7935215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gadolinium as a neutron capture therapy agent.
    Shih JL; Brugger RM
    Med Phys; 1992; 19(3):733-44. PubMed ID: 1508113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and biological doses produced from neutron capture in a 235U foil.
    Liu HB; Brugger RM; Laster BH; Greenberg DD; Gordon CR; Warkentien LS
    Med Phys; 1995 May; 22(5):591-5. PubMed ID: 7643798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.
    Peters T; Grunewald C; Blaickner M; Ziegner M; Schütz C; Iffland D; Hampel G; Nawroth T; Langguth P
    Radiat Oncol; 2015 Feb; 10():52. PubMed ID: 25889824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.
    Tanaka K; Endo S; Hoshi M
    Appl Radiat Isot; 2010 Jan; 68(1):207-10. PubMed ID: 19726204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerator-based neutron brachytherapy.
    Song H; Yanch JC; Klinkowstein RE
    Med Phys; 2002 Jan; 29(1):15-25. PubMed ID: 11831569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating neutron activated contrast agent imaging for tumor localization in proton therapy: a feasibility study for proton neutron gamma-x detection (PNGXD).
    Van Delinder KW; Crawford D; Zhang T; Khan R; Gräfe JL
    Phys Med Biol; 2020 Jan; 65(3):035005. PubMed ID: 31851952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gadolinium neutron capture therapy for brain tumors: a computer study.
    Masiakowski JT; Horton JL; Peters LJ
    Med Phys; 1992; 19(5):1277-84. PubMed ID: 1435610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of three-dimensional deterministic radiation transport theory dose distribution analysis for boron neutron capture therapy.
    Nigg DW; Randolph PD; Wheeler FJ
    Med Phys; 1991; 18(1):43-53. PubMed ID: 1901131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New understanding from Cf brachytherapy trials and considerations for neutron therapy of bulky gyn carcinoma for future.
    Maruyama Y; Mesina J; Yudelev M; Wierzbicki J; Deppe G; Porter AT
    Strahlenther Onkol; 1994 May; 170(5):253-63. PubMed ID: 8197547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation effect of gadolinium-neutron capture reactions on the survival of Chinese hamster cells.
    Akine Y; Tokita N; Matsumoto T; Oyama H; Egawa S; Aizawa O
    Strahlenther Onkol; 1990 Dec; 166(12):831-3. PubMed ID: 2267661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.
    Rivard MJ; Zamenhof RG
    Appl Radiat Isot; 2004 Nov; 61(5):753-7. PubMed ID: 15308139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of radiation dosimetry in water and in solid phantom materials for I-125 and Pd-103 brachytherapy sources: EGS4 Monte Carlo study.
    Luxton G
    Med Phys; 1994 May; 21(5):631-41. PubMed ID: 7935197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.