These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15841472)

  • 1. An accurate relativistic universal Gaussian basis set for hydrogen through Nobelium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Haiduke RL; De Macedo LG; Da Silva AB
    J Comput Chem; 2005 Jul; 26(9):932-40. PubMed ID: 15841472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Haiduke RL; Da Silva AB
    J Comput Chem; 2006 Dec; 27(16):1970-9. PubMed ID: 17031899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate relativistic adapted Gaussian basis sets for francium through Ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Teodoro TQ; Haiduke RL
    J Comput Chem; 2013 Oct; 34(27):2372-9. PubMed ID: 23913741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon.
    Gusmão EF; Haiduke RLA
    J Comput Chem; 2022 Oct; 43(28):1901-1910. PubMed ID: 36056621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polynomial version of the generator coordinate Dirac-Fock method.
    Haiduke RL; De Macedo LG; Barbosa RC; da Silva AB
    J Comput Chem; 2004 Nov; 25(15):1904-9. PubMed ID: 15389748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation (II): 80Hg through 103Lr.
    Yamamoto S; Tatewaki H; Watanabe Y
    J Chem Phys; 2006 Aug; 125(5):054106. PubMed ID: 16942202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation.
    Tatewaki H; Watanabe Y
    J Comput Chem; 2003 Nov; 24(15):1823-8. PubMed ID: 14515364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation energies for He isoelectronic sequence with Z=2-116 from four-component relativistic configuration interactions.
    Watanabe Y; Tatewaki H
    J Chem Phys; 2005 Aug; 123(7):074322. PubMed ID: 16229585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements.
    Teodoro TQ; da Silva AB; Haiduke RL
    J Chem Theory Comput; 2014 Sep; 10(9):3800-6. PubMed ID: 26588525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.
    Przybytek M; Helgaker T
    J Chem Phys; 2013 Aug; 139(5):054114. PubMed ID: 23927250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation.
    Tatewaki H; Watanabe Y
    J Chem Phys; 2004 Sep; 121(10):4528-33. PubMed ID: 15332882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-accuracy calculation of nuclear quadrupole moments of atomic halogens.
    Yakobi H; Eliav E; Visscher L; Kaldor U
    J Chem Phys; 2007 Feb; 126(5):054301. PubMed ID: 17302471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model.
    Malkin E; Malkin I; Malkina OL; Malkin VG; Kaupp M
    Phys Chem Chem Phys; 2006 Sep; 8(35):4079-85. PubMed ID: 17028696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ab initio molecular orbital study of the nuclear volume effects in uranium isotope fractionations.
    Abe M; Suzuki T; Fujii Y; Hada M; Hirao K
    J Chem Phys; 2008 Oct; 129(16):164309. PubMed ID: 19045268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous analytical optimization of variational parameters in Gaussian-type functions with full configuration interaction of multicomponent molecular orbital method by elimination of translational and rotational motions: application to isotopomers of the hydrogen molecule.
    Ishimoto T; Tachikawa M; Nagashima U
    J Chem Phys; 2008 Apr; 128(16):164118. PubMed ID: 18447432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.
    Autschbach J
    Chemphyschem; 2009 Sep; 10(13):2274-83. PubMed ID: 19670399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear electric quadrupole moment of gold.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM; van Stralen JN; Visscher L
    J Chem Phys; 2007 Feb; 126(6):064314. PubMed ID: 17313222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Gaussian basis sets for atomic and molecular calculations obtained from the generator coordinate method with polynomial discretization.
    Celeste R; Maringolo MP; Comar M; Viana RB; Guimarães AR; Haiduke RL; da Silva AB
    J Mol Model; 2015 Oct; 21(10):274. PubMed ID: 26419974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.