These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 15841476)
1. An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: 2 < or = N < or = 372. Pullan W J Comput Chem; 2005 Jul; 26(9):899-906. PubMed ID: 15841476 [TBL] [Abstract][Full Text] [Related]
2. Clever and efficient method for searching optimal geometries of lennard-jones clusters. Takeuchi H J Chem Inf Model; 2006; 46(5):2066-70. PubMed ID: 16995737 [TBL] [Abstract][Full Text] [Related]
3. Novel method for geometry optimization of molecular clusters: application to benzene clusters. Takeuchi H J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254 [TBL] [Abstract][Full Text] [Related]
4. Global optimization of binary Lennard-Jones clusters using three perturbation operators. Ye T; Xu R; Huang W J Chem Inf Model; 2011 Mar; 51(3):572-7. PubMed ID: 21332209 [TBL] [Abstract][Full Text] [Related]
5. Parallel random tunneling algorithm for structural optimization of Lennard-Jones clusters up to N=330. Shao X; Jiang H; Cai W J Chem Inf Comput Sci; 2004; 44(1):193-9. PubMed ID: 14741028 [TBL] [Abstract][Full Text] [Related]
6. On the use of different potential energy functions in rare-gas cluster optimization by genetic algorithms: application to argon clusters. Marques JM; Pereira FB; Leitão T J Phys Chem A; 2008 Jul; 112(27):6079-89. PubMed ID: 18547035 [TBL] [Abstract][Full Text] [Related]
7. A dynamic lattice searching method with constructed core for optimization of large Lennard-Jones clusters. Yang X; Cai W; Shao X J Comput Chem; 2007 Jun; 28(8):1427-33. PubMed ID: 17330880 [TBL] [Abstract][Full Text] [Related]
8. "Compressing liquid": an efficient global minima search strategy for clusters. Zhou RL; Zhao LY; Pan BC J Chem Phys; 2009 Jul; 131(3):034108. PubMed ID: 19624182 [TBL] [Abstract][Full Text] [Related]
9. The performance of minima hopping and evolutionary algorithms for cluster structure prediction. Schönborn SE; Goedecker S; Roy S; Oganov AR J Chem Phys; 2009 Apr; 130(14):144108. PubMed ID: 19368430 [TBL] [Abstract][Full Text] [Related]
10. Funnel hopping: Searching the cluster potential energy surface over the funnels. Cheng L; Feng Y; Yang J; Yang J J Chem Phys; 2009 Jun; 130(21):214112. PubMed ID: 19508061 [TBL] [Abstract][Full Text] [Related]
11. A dynamic lattice searching method with interior operation for unbiased optimization of large Lennard-Jones clusters. Shao X; Yang X; Cai W J Comput Chem; 2008 Aug; 29(11):1772-9. PubMed ID: 18351615 [TBL] [Abstract][Full Text] [Related]
12. A dynamic lattice searching method for fast optimization of Lennard-Jones clusters. Shao X; Cheng L; Cai W J Comput Chem; 2004 Nov; 25(14):1693-8. PubMed ID: 15362126 [TBL] [Abstract][Full Text] [Related]
13. Geometry optimization of atomic clusters using a heuristic method with dynamic lattice searching. Lai X; Huang W; Xu R J Phys Chem A; 2011 May; 115(20):5021-6. PubMed ID: 21526817 [TBL] [Abstract][Full Text] [Related]
14. Global potential energy minima of C60(H2O)n clusters. Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ J Phys Chem B; 2006 Jul; 110(27):13357-62. PubMed ID: 16821854 [TBL] [Abstract][Full Text] [Related]
15. Geometry optimization of carbon dioxide clusters (CO2)n for 4 < or = n < or = 40. Takeuchi H J Phys Chem A; 2008 Aug; 112(33):7492-7. PubMed ID: 18665573 [TBL] [Abstract][Full Text] [Related]
16. Unbiased fuzzy global optimization of Lennard-Jones clusters for N ≤ 1000. Yu K; Wang X; Chen L; Wang L J Chem Phys; 2019 Dec; 151(21):214105. PubMed ID: 31822070 [TBL] [Abstract][Full Text] [Related]
17. Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles. Rondina GG; Da Silva JL J Chem Inf Model; 2013 Sep; 53(9):2282-98. PubMed ID: 23957311 [TBL] [Abstract][Full Text] [Related]
18. Global optimization of additive potential energy functions: predicting binary Lennard-Jones clusters. Kolossváry I; Bowers KJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056711. PubMed ID: 21230623 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical global optimization of quasiseparable systems: application to Lennard-Jones clusters. Krivov SV Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):025701. PubMed ID: 12241230 [TBL] [Abstract][Full Text] [Related]
20. An adaptive immune optimization algorithm for energy minimization problems. Shao X; Cheng L; Cai W J Chem Phys; 2004 Jun; 120(24):11401-6. PubMed ID: 15268174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]