These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15842171)

  • 1. Dynamics of the native and the ligand-bound structures of eosinophil cationic protein: network of hydrogen bonds at the catalytic site.
    Sanjeev BS; Vishveshwara S
    J Biomol Struct Dyn; 2005 Jun; 22(6):657-72. PubMed ID: 15842171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer modeling and molecular dynamics simulations of ligand bound complexes of bovine angiogenin: dinucleotide topology at the active site of RNase a family proteins.
    Madhusudhan MS; Sanjeev BS; Vishveshwara S
    Proteins; 2001 Oct; 45(1):30-9. PubMed ID: 11536357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational transitions in eosinophil cationic protein: a molecular dynamics study in aqueous environment.
    Sanjeev BS; Vishveshwara S
    J Biomol Struct Dyn; 2004 Oct; 22(2):171-82. PubMed ID: 15317478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modeling of human angiogenin-dinucleotide substrate interaction.
    Madhusudhan MS; Vishveshwara S
    Proteins; 2001 Jan; 42(1):125-35. PubMed ID: 11093266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-water interactions in ribonuclease A and angiogenin: a molecular dynamics study.
    Sanjeev BS; Vishveshwara S
    Proteins; 2004 Jun; 55(4):915-23. PubMed ID: 15146489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sulfate-binding site structure of the human eosinophil cationic protein as revealed by a new crystal form.
    Boix E; Pulido D; Moussaoui M; Nogués MV; Russi S
    J Struct Biol; 2012 Jul; 179(1):1-9. PubMed ID: 22579681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues.
    Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2005 May; 44(21):7805-17. PubMed ID: 15909995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of substrate UpA binding to RNase A--computer modelling and energetics approach.
    Seshadri K; Rao VS; Vishveshwara S
    J Biomol Struct Dyn; 1994 Dec; 12(3):581-603. PubMed ID: 7727060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin.
    Merlino A; Vitagliano L; Ceruso MA; Mazzarella L
    Proteins; 2003 Oct; 53(1):101-10. PubMed ID: 12945053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site.
    Torrent M; Nogués MV; Boix E
    J Mol Recognit; 2011; 24(1):90-100. PubMed ID: 20213669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics study based post facto free energy analysis of the binding of bovine angiogenin with UMP and CMP ligands.
    Madhusudhan MS; Vishveshwara S; Das A; Kalra P; Jayaram B
    Indian J Biochem Biophys; 2001; 38(1-2):27-33. PubMed ID: 11563327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation.
    Rittenhouse RC; Apostoluk WK; Miller JH; Straatsma TP
    Proteins; 2003 Nov; 53(3):667-82. PubMed ID: 14579358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deducing hydration sites of a protein from molecular dynamics simulations.
    Madhusudhan MS; Vishveshwara S
    J Biomol Struct Dyn; 2001 Aug; 19(1):105-14. PubMed ID: 11565842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of RNase Sa2 complexes with mononucleotides--new aspects of catalytic reaction and substrate recognition.
    Bauerová-Hlinková V; Dvorský R; Perecko D; Povazanec F; Sevcík J
    FEBS J; 2009 Aug; 276(15):4156-68. PubMed ID: 19558492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The (1)H, (13)C, (15)N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy.
    Laurents DV; Bruix M; Jiménez MA; Santoro J; Boix E; Moussaoui M; Nogués MV; Rico M
    Biopolymers; 2009 Dec; 91(12):1018-28. PubMed ID: 19189375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies on substrate inhibition and substrate activation of ribonuclease A: experimental and
    Dehghan Shasaltaneh M; Naghdi E; Moosavi-Nejad Z
    J Biomol Struct Dyn; 2024 Aug; 42(13):6628-6644. PubMed ID: 37539792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple substrate binding states and chiral recognition in cofactor-independent glutamate racemase: a molecular dynamics study.
    Möbitz H; Bruice TC
    Biochemistry; 2004 Aug; 43(30):9685-94. PubMed ID: 15274623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.