These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 15843014)

  • 1. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough.
    Salas-Marco J; Bedwell DM
    J Mol Biol; 2005 May; 348(4):801-15. PubMed ID: 15843014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive assay of translational fidelity (readthrough and termination) in eukaryotic cells.
    Sogaard TM; Jakobsen CG; Justesen J
    Biochemistry (Mosc); 1999 Dec; 64(12):1408-17. PubMed ID: 10648965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae.
    Rakwalska M; Rospert S
    Mol Cell Biol; 2004 Oct; 24(20):9186-97. PubMed ID: 15456889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-delta mutant of Saccharomyces cerevisiae.
    Kwapisz M; Smagowicz WJ; Oficjalska D; Hatin I; Rousset JP; ZoƂadek T; Boguta M
    Curr Genet; 2002 Dec; 42(3):147-52. PubMed ID: 12491008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy.
    Howard MT; Shirts BH; Petros LM; Flanigan KM; Gesteland RF; Atkins JF
    Ann Neurol; 2000 Aug; 48(2):164-9. PubMed ID: 10939566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae.
    Bonetti B; Fu L; Moon J; Bedwell DM
    J Mol Biol; 1995 Aug; 251(3):334-45. PubMed ID: 7650736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating between near- and non-cognate codons in Saccharomyces cerevisiae.
    Plant EP; Nguyen P; Russ JR; Pittman YR; Nguyen T; Quesinberry JT; Kinzy TG; Dinman JD
    PLoS One; 2007 Jun; 2(6):e517. PubMed ID: 17565370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Missense translation errors in Saccharomyces cerevisiae.
    Stansfield I; Jones KM; Herbert P; Lewendon A; Shaw WV; Tuite MF
    J Mol Biol; 1998 Sep; 282(1):13-24. PubMed ID: 9733638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae.
    Mangkalaphiban K; He F; Ganesan R; Wu C; Baker R; Jacobson A
    PLoS Genet; 2021 Apr; 17(4):e1009538. PubMed ID: 33878104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of NMD increases viability of sup45 nonsense mutants in Saccharomyces cerevisiae.
    Chabelskaya S; Gryzina V; Moskalenko S; Le Goff C; Zhouravleva G
    BMC Mol Biol; 2007 Aug; 8():71. PubMed ID: 17705828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational misreading: mutations in translation elongation factor 1alpha differentially affect programmed ribosomal frameshifting and drug sensitivity.
    Dinman JD; Kinzy TG
    RNA; 1997 Aug; 3(8):870-81. PubMed ID: 9257646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased -1 ribosomal frameshifting efficiency by yeast prion-like phenotype [PSI+].
    Park HJ; Park SJ; Oh DB; Lee S; Kim YG
    FEBS Lett; 2009 Feb; 583(4):665-9. PubMed ID: 19166852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast.
    Magazinnik T; Anand M; Sattlegger E; Hinnebusch AG; Kinzy TG
    Nucleic Acids Res; 2005; 33(14):4584-92. PubMed ID: 16100380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16 S ribosomal RNA.
    Pagel FT; Zhao SQ; Hijazi KA; Murgola EJ
    J Mol Biol; 1997 Apr; 267(5):1113-23. PubMed ID: 9150400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1].
    Moskalenko SE; Zhuravleva GA; Soom MIa; Shabel'skaia SV; Volkov KV; Zemlianko OM; Philippe M; Mironova LN; Inge-Vechtomov SG
    Genetika; 2004 May; 40(5):599-606. PubMed ID: 15272556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of 3' nucleotide context and stop codon readthrough are determined during mRNA translation elongation.
    Biziaev N; Sokolova E; Yanvarev DV; Toropygin IY; Shuvalov A; Egorova T; Alkalaeva E
    J Biol Chem; 2022 Jul; 298(7):102133. PubMed ID: 35700825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of efficiency of translation termination in Saccharomyces cerevisiae.
    Nizhnikov AA; Antonets KS; Inge-Vechtomov SG; Derkatch IL
    Prion; 2014; 8(3):247-60. PubMed ID: 25486049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay.
    Firoozan M; Grant CM; Duarte JA; Tuite MF
    Yeast; 1991 Feb; 7(2):173-83. PubMed ID: 1905859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae.
    Keeling KM; Lanier J; Du M; Salas-Marco J; Gao L; Kaenjak-Angeletti A; Bedwell DM
    RNA; 2004 Apr; 10(4):691-703. PubMed ID: 15037778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.