These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15843023)

  • 1. Mechanical stress induced mechanism of microtubule catastrophes.
    Hunyadi V; Chrétien D; Jánosi IM
    J Mol Biol; 2005 May; 348(4):927-38. PubMed ID: 15843023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubules switch occasionally into unfavorable configurations during elongation.
    Chrétien D; Fuller SD
    J Mol Biol; 2000 May; 298(4):663-76. PubMed ID: 10788328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro.
    Vitre B; Coquelle FM; Heichette C; Garnier C; Chrétien D; Arnal I
    Nat Cell Biol; 2008 Apr; 10(4):415-21. PubMed ID: 18364701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
    Caplow M; Fee L
    Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reassessment of the factors affecting microtubule assembly and disassembly in vitro.
    Caudron N; Valiron O; Usson Y; Valiron P; Job D
    J Mol Biol; 2000 Mar; 297(1):211-20. PubMed ID: 10704317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of GTP and Pi in wild-type and mutated yeast microtubules: implications for the role of the GTP/GDP-Pi cap in microtubule dynamics.
    Dougherty CA; Himes RH; Wilson L; Farrell KW
    Biochemistry; 1998 Aug; 37(31):10861-5. PubMed ID: 9692978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly dynamics of microtubules at molecular resolution.
    Kerssemakers JW; Munteanu EL; Laan L; Noetzel TL; Janson ME; Dogterom M
    Nature; 2006 Aug; 442(7103):709-12. PubMed ID: 16799566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: neither variability of growth and shortening rates nor "rescue" requires microtubule-associated proteins.
    Billger MA; Bhattacharjee G; Williams RC
    Biochemistry; 1996 Oct; 35(42):13656-63. PubMed ID: 8885845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into cytoskeletal behavior from computational modeling of dynamic microtubules in a cell-like environment.
    Gregoretti IV; Margolin G; Alber MS; Goodson HV
    J Cell Sci; 2006 Nov; 119(Pt 22):4781-8. PubMed ID: 17093268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules as mechanical force sensors.
    Karafyllidis IG; Lagoudas DC
    Biosystems; 2007 Mar; 88(1-2):137-46. PubMed ID: 16806669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth.
    Chou KC; Zhang CT; Maggiora GM
    Biopolymers; 1994 Jan; 34(1):143-53. PubMed ID: 8110966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stathmin family protein SCG10 differentially regulates the plus and minus end dynamics of microtubules at steady state in vitro: implications for its role in neurite outgrowth.
    Manna T; Grenningloh G; Miller HP; Wilson L
    Biochemistry; 2007 Mar; 46(11):3543-52. PubMed ID: 17311410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues.
    Dimitrov A; Quesnoit M; Moutel S; Cantaloube I; Poüs C; Perez F
    Science; 2008 Nov; 322(5906):1353-6. PubMed ID: 18927356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physical basis of microtubule structure and stability.
    Sept D; Baker NA; McCammon JA
    Protein Sci; 2003 Oct; 12(10):2257-61. PubMed ID: 14500883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of microtubule stability in vitro and in transfected cells by MAP1B and SCG10.
    Bondallaz P; Barbier A; Soehrman S; Grenningloh G; Riederer BM
    Cell Motil Cytoskeleton; 2006 Nov; 63(11):681-95. PubMed ID: 17009328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent elasticity of microtubules.
    Kis A; Kasas S; Kulik AJ; Catsicas S; Forró L
    Langmuir; 2008 Jun; 24(12):6176-81. PubMed ID: 18494514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations.
    Daneshmand F; Ghavanloo E; Amabili M
    J Biomech; 2011 Jul; 44(10):1960-6. PubMed ID: 21632054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity.
    Kurachi M; Hoshi M; Tashiro H
    Cell Motil Cytoskeleton; 1995; 30(3):221-8. PubMed ID: 7758138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos.
    Tuszynski JA; Carpenter EJ; Huzil JT; Malinski W; Luchko T; Luduena RF
    Int J Dev Biol; 2006; 50(2-3):341-58. PubMed ID: 16479502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and length distribution of microtubules under force and confinement.
    Zelinski B; Müller N; Kierfeld J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041918. PubMed ID: 23214626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.