These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15843068)

  • 1. The effect of 1/f fluctuation in inter-stimulus intervals on auditory evoked mismatch field.
    Harada N; Masuda T; Endo H; Nakamura Y; Takeda T; Tonoike M
    Neurosci Lett; 2005 May; 379(3):223-8. PubMed ID: 15843068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory evoked fields to variations of interaural time delay.
    Soeta Y; Nakagawa S; Tonoike M
    Neurosci Lett; 2005 Aug; 383(3):311-6. PubMed ID: 15955427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of center frequency on binaural auditory filter bandwidth in the human brain.
    Soeta Y; Shimokura R; Nakagawa S
    Neuroreport; 2008 Nov; 19(17):1709-13. PubMed ID: 18841088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of interstimulus interval on sensory gating and on preattentive auditory memory in the oddball paradigm. Can magnitude of the sensory gating affect preattentive auditory comparison process?
    Ermutlu MN; Demiralp T; Karamürsel S
    Neurosci Lett; 2007 Jan; 412(1):1-5. PubMed ID: 17197084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duration-sensitive neurons in the auditory cortex.
    Beukes EW; Munro KJ; Purdy SC
    Neuroreport; 2009 Aug; 20(13):1129-33. PubMed ID: 19597375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From objective to subjective: pitch representation in the human auditory cortex.
    Winkler I; Tervaniemi M; Huotilainen M; Ilmoniemi R; Ahonen A; Salonen O; Standertskjöld-Nordenstam CG; Näätänen R
    Neuroreport; 1995 Nov; 6(17):2317-20. PubMed ID: 8747145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity.
    Deouell LY; Parnes A; Pickard N; Knight RT
    Eur J Neurosci; 2006 Sep; 24(5):1488-94. PubMed ID: 16987229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the task of categorizing FM direction on auditory evoked magnetic fields in the human auditory cortex.
    König R; Sieluzycki C; Simserides C; Heil P; Scheich H
    Brain Res; 2008 Jul; 1220():102-17. PubMed ID: 18420183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus induced desynchronization of human auditory 40-Hz steady-state responses.
    Ross B; Herdman AT; Pantev C
    J Neurophysiol; 2005 Dec; 94(6):4082-93. PubMed ID: 16107530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromagnetic mismatch field (MMF) dependence on the auditory temporal integration window and the existence of categorical boundaries: comparisons between dissyllabic words and their equivalent tones.
    Inouchi M; Kubota M; Ohta K; Matsushima E; Ferrari P; Scovel T
    Brain Res; 2008 Sep; 1232():155-62. PubMed ID: 18671951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small changes in temporal deviance modulate mismatch negativity amplitude in humans.
    Kisley MA; Davalos DB; Layton HS; Pratt D; Ellis JK; Seger CA
    Neurosci Lett; 2004 Apr; 358(3):197-200. PubMed ID: 15039115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multilevel and cross-modal approach towards neuronal mechanisms of auditory streaming.
    Rahne T; Deike S; Selezneva E; Brosch M; König R; Scheich H; Böckmann M; Brechmann A
    Brain Res; 2008 Jul; 1220():118-31. PubMed ID: 17765207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex.
    Nakamoto KT; Zhang J; Kitzes LM
    J Neurophysiol; 2006 Mar; 95(3):1897-907. PubMed ID: 16339004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic glottal excitation and formant frequencies in the perception of vowels.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    Neurol Clin Neurophysiol; 2004 Nov; 2004():103. PubMed ID: 16012623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery and refractoriness of auditory evoked fields after gaps in click trains.
    Gutschalk A; Patterson RD; Uppenkamp S; Scherg M; Rupp A
    Eur J Neurosci; 2004 Dec; 20(11):3141-7. PubMed ID: 15579168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds.
    Shahin AJ; Roberts LE; Miller LM; McDonald KL; Alain C
    Brain Topogr; 2007; 20(2):55-61. PubMed ID: 17899352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds.
    Kuriki S; Ohta K; Koyama S
    Cereb Cortex; 2007 Nov; 17(11):2725-32. PubMed ID: 17289776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the 40Hz steady state auditory evoked magnetic field from ages 5 to 52.
    Rojas DC; Maharajh K; Teale PD; Kleman MR; Benkers TL; Carlson JP; Reite ML
    Clin Neurophysiol; 2006 Jan; 117(1):110-7. PubMed ID: 16316780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latency variation of auditory N1m responses to vocal and nonvocal sounds.
    Mizuochi T; Yumoto M; Karino S; Itoh K; Yamasoba T
    Neuroreport; 2007 Dec; 18(18):1945-9. PubMed ID: 18007192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.