These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 15843146)
1. Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Akoachere M; Iozef R; Rahlfs S; Deponte M; Mannervik B; Creighton DJ; Schirmer H; Becker K Biol Chem; 2005 Jan; 386(1):41-52. PubMed ID: 15843146 [TBL] [Abstract][Full Text] [Related]
2. Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases. Urscher M; Przyborski JM; Imoto M; Deponte M Mol Microbiol; 2010 Apr; 76(1):92-103. PubMed ID: 20149108 [TBL] [Abstract][Full Text] [Related]
3. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis. Urscher M; Deponte M Biol Chem; 2009 Nov; 390(11):1171-83. PubMed ID: 19663684 [TBL] [Abstract][Full Text] [Related]
4. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny. Silva MS; Barata L; Ferreira AE; Romão S; Tomás AM; Freire AP; Cordeiro C Biochemistry; 2008 Jan; 47(1):195-204. PubMed ID: 18052346 [TBL] [Abstract][Full Text] [Related]
5. Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I. Deponte M; Sturm N; Mittler S; Harner M; Mack H; Becker K J Biol Chem; 2007 Sep; 282(39):28419-28430. PubMed ID: 17664277 [TBL] [Abstract][Full Text] [Related]
6. Tight-binding inhibitors efficiently inactivate both reaction centers of monomeric Plasmodium falciparum glyoxalase 1. Urscher M; More SS; Alisch R; Vince R; Deponte M FEBS J; 2012 Jul; 279(14):2568-78. PubMed ID: 22607473 [TBL] [Abstract][Full Text] [Related]
7. Glyoxalase I from Leishmania donovani: a potential target for anti-parasite drug. Padmanabhan PK; Mukherjee A; Singh S; Chattopadhyaya S; Gowri VS; Myler PJ; Srinivasan N; Madhubala R Biochem Biophys Res Commun; 2005 Dec; 337(4):1237-48. PubMed ID: 16236261 [TBL] [Abstract][Full Text] [Related]
8. Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity. Campos-Bermudez VA; Leite NR; Krog R; Costa-Filho AJ; Soncini FC; Oliva G; Vila AJ Biochemistry; 2007 Oct; 46(39):11069-79. PubMed ID: 17764159 [TBL] [Abstract][Full Text] [Related]
10. A novel enzyme complex of orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase in human malaria parasite Plasmodium falciparum: physical association, kinetics, and inhibition characterization. Krungkrai SR; DelFraino BJ; Smiley JA; Prapunwattana P; Mitamura T; Horii T; Krungkrai J Biochemistry; 2005 Feb; 44(5):1643-52. PubMed ID: 15683248 [TBL] [Abstract][Full Text] [Related]
11. Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion. Iozef R; Rahlfs S; Chang T; Schirmer H; Becker K FEBS Lett; 2003 Nov; 554(3):284-8. PubMed ID: 14623080 [TBL] [Abstract][Full Text] [Related]
12. A possible regulatory role of 17beta-estradiol and tamoxifen on glyoxalase I and glyoxalase II genes expression in MCF7 and BT20 human breast cancer cells. Rulli A; Antognelli C; Prezzi E; Baldracchini F; Piva F; Giovannini E; Talesa V Breast Cancer Res Treat; 2006 Mar; 96(2):187-96. PubMed ID: 16319983 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drugs. Padmanabhan PK; Mukherjee A; Madhubala R Biochem J; 2006 Jan; 393(Pt 1):227-34. PubMed ID: 16159313 [TBL] [Abstract][Full Text] [Related]
14. Bivalent transition-state analogue inhibitors of human glyoxalase I. Zheng ZB; Creighton DJ Org Lett; 2003 Dec; 5(25):4855-8. PubMed ID: 14653691 [TBL] [Abstract][Full Text] [Related]
15. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Ariza A; Vickers TJ; Greig N; Armour KA; Dixon MJ; Eggleston IM; Fairlamb AH; Bond CS Mol Microbiol; 2006 Feb; 59(4):1239-48. PubMed ID: 16430697 [TBL] [Abstract][Full Text] [Related]
16. The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. Werner C; Stubbs MT; Krauth-Siegel RL; Klebe G J Mol Biol; 2005 Jun; 349(3):597-607. PubMed ID: 15878595 [TBL] [Abstract][Full Text] [Related]
17. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors. Maric S; Donnelly SM; Robinson MW; Skinner-Adams T; Trenholme KR; Gardiner DL; Dalton JP; Stack CM; Lowther J Biochemistry; 2009 Jun; 48(23):5435-9. PubMed ID: 19408962 [TBL] [Abstract][Full Text] [Related]
18. Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. Milani M; Balconi E; Aliverti A; Mastrangelo E; Seeber F; Bolognesi M; Zanetti G J Mol Biol; 2007 Mar; 367(2):501-13. PubMed ID: 17258767 [TBL] [Abstract][Full Text] [Related]
19. The glyoxalase pathway in protozoan parasites. Sousa Silva M; Ferreira AE; Gomes R; Tomás AM; Ponces Freire A; Cordeiro C Int J Med Microbiol; 2012 Oct; 302(4-5):225-9. PubMed ID: 22901378 [TBL] [Abstract][Full Text] [Related]
20. Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile. Krungkrai SR; Aoki S; Palacpac NM; Sato D; Mitamura T; Krungkrai J; Horii T Mol Biochem Parasitol; 2004 Apr; 134(2):245-55. PubMed ID: 15003844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]