These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15843683)

  • 1. Predicting the secondary structures and tertiary interactions of 211 group I introns in IE subgroup.
    Li Z; Zhang Y
    Nucleic Acids Res; 2005; 33(7):2118-28. PubMed ID: 15843683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A peripheral element assembles the compact core structure essential for group I intron self-splicing.
    Xiao M; Li T; Yuan X; Shang Y; Wang F; Chen S; Zhang Y
    Nucleic Acids Res; 2005; 33(14):4602-11. PubMed ID: 16100381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential helix stabilities and sites pre-organized for tertiary interactions revealed by monitoring local nucleotide flexibility in the bI5 group I intron RNA.
    Chamberlin SI; Weeks KM
    Biochemistry; 2003 Feb; 42(4):901-9. PubMed ID: 12549908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA.
    Pan J; Woodson SA
    J Mol Biol; 1999 Dec; 294(4):955-65. PubMed ID: 10588899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme.
    Rangan P; Masquida B; Westhof E; Woodson SA
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1574-9. PubMed ID: 12574513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns.
    Michel F; Ellington AD; Couture S; Szostak JW
    Nature; 1990 Oct; 347(6293):578-80. PubMed ID: 2215683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain.
    Murphy FL; Cech TR
    J Mol Biol; 1994 Feb; 236(1):49-63. PubMed ID: 8107125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis.
    Michel F; Westhof E
    J Mol Biol; 1990 Dec; 216(3):585-610. PubMed ID: 2258934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic level architecture of group I introns revealed.
    Vicens Q; Cech TR
    Trends Biochem Sci; 2006 Jan; 31(1):41-51. PubMed ID: 16356725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic identification of group I intron cores in genomic DNA sequences.
    Lisacek F; Diaz Y; Michel F
    J Mol Biol; 1994 Jan; 235(4):1206-17. PubMed ID: 7508513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a phage Twort group I ribozyme-product complex.
    Golden BL; Kim H; Chase E
    Nat Struct Mol Biol; 2005 Jan; 12(1):82-9. PubMed ID: 15580277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and assembly of group I introns.
    Woodson SA
    Curr Opin Struct Biol; 2005 Jun; 15(3):324-30. PubMed ID: 15922592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetically close group I introns with different positions among Paramecium bursaria photobionts imply a primitive stage of intron diversification.
    Hoshina R; Imamura N
    Mol Biol Evol; 2009 Jun; 26(6):1309-19. PubMed ID: 19279084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved element in the yeast RNase MRP RNA subunit can participate in a long-range base-pairing interaction.
    Walker SC; Avis JM
    J Mol Biol; 2004 Aug; 341(2):375-88. PubMed ID: 15276830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near native structure in an RNA collapsed state.
    Buchmueller KL; Weeks KM
    Biochemistry; 2003 Dec; 42(47):13869-78. PubMed ID: 14636054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA structural motifs: building blocks of a modular biomolecule.
    Hendrix DK; Brenner SE; Holbrook SR
    Q Rev Biophys; 2005 Aug; 38(3):221-43. PubMed ID: 16817983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.