These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15843744)

  • 1. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation.
    Sokka SD; Gauthier TP; Hynynen K
    Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the physical origin of conical bubble structure under an ultrasonic horn.
    Dubus B; Vanhille C; Campos-Pozuelo C; Granger C
    Ultrason Sonochem; 2010 Jun; 17(5):810-8. PubMed ID: 20371200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M; Choi MJ; Zeqiri B
    Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM
    Ultrason Sonochem; 2010 Jun; 17(5):863-9. PubMed ID: 20236851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards classification of the bifurcation structure of a spherical cavitation bubble.
    Behnia S; Sojahrood AJ; Soltanpoor W; Sarkhosh L
    Ultrasonics; 2009 Dec; 49(8):605-10. PubMed ID: 19545884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles.
    Liebler M; Dreyer T; Riedlinger RE
    Ultrasonics; 2006 Dec; 44 Suppl 1():e319-24. PubMed ID: 16908041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H
    Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field.
    Campos-Pozuelo C; Granger C; Vanhille C; Moussatov A; Dubus B
    Ultrason Sonochem; 2005 Jan; 12(1-2):79-84. PubMed ID: 15474956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation.
    Jenderka KV; Koch C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation.
    Chen S; Kinnick R; Greenleaf JF; Fatemi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e123-6. PubMed ID: 16930662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue.
    Wang M; Zhou Y
    Ultrason Sonochem; 2018 Apr; 42():327-338. PubMed ID: 29429677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical model for ice primary nucleation induced by acoustic cavitation.
    Saclier M; Peczalski R; Andrieu J
    Ultrason Sonochem; 2010 Jan; 17(1):98-105. PubMed ID: 19482538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.