BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1584411)

  • 1. Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from Torpedo synaptosomes.
    Fariñas I; Solsona C; Marsal J
    Neuroscience; 1992; 47(3):641-8. PubMed ID: 1584411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.
    Moulian N; Gaudry-Talarmain YM
    Neuroscience; 1993 Jun; 54(4):1035-41. PubMed ID: 8393536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist omega Conus toxin.
    Yeager RE; Yoshikami D; Rivier J; Cruz LJ; Miljanich GP
    J Neurosci; 1987 Aug; 7(8):2390-6. PubMed ID: 3112325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action and binding of omega-conotoxin on the putative calcium channel of synaptosomal plasma membrane from electric organ of Japanese electric ray, Narke japonica.
    O'Hori T; Wang CY; Tokumaru H; Chen LC; Hatanaka K; Hirashima N; Kirino Y
    Neuroscience; 1993 Jun; 54(4):1043-50. PubMed ID: 8393537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin.
    Rabasseda X; Solsona C; Marsal J; Egea G; Bizzini B
    FEBS Lett; 1987 Mar; 213(2):337-40. PubMed ID: 3556585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calcium channel antagonist, omega-conotoxin, and electric organ nerve terminals: binding and inhibition of transmitter release and calcium influx.
    Ahmad SN; Miljanich GP
    Brain Res; 1988 Jun; 453(1-2):247-56. PubMed ID: 3401762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic vesicle specific proteoglycan: stability in isolated vesicles and in synaptosomes during induced transmitter release.
    Kuhn DM; Volknandt W; Stadler H; Zimmermann H
    J Neurochem; 1988 Jan; 50(1):11-6. PubMed ID: 3121784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lambert-Eaton syndrome antibodies inhibit acetylcholine release and P/Q-type Ca2+ channels in electric ray nerve endings.
    Satoh Y; Hirashima N; Tokumaru H; Takahashi MP; Kang J; Viglione MP; Kim YI; Kirino Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):427-38. PubMed ID: 9508807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium channels controlling acetylcholine release in the guinea-pig isolated anterior pelvic ganglion: an electropharmacological study.
    Smith AB; Cunnane TC
    Neuroscience; 1999; 94(3):891-6. PubMed ID: 10579580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of calcium channels in depolarization-evoked release of adenosine from spinal cord synaptosomes.
    Cahill CM; White TD; Sawynok J
    J Neurochem; 1993 Mar; 60(3):886-93. PubMed ID: 7679728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ.
    Suszkiw J; Toth G; Murawsky M; Cooper GP
    Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological evidence for an omega-conotoxin, dihydropyridine-insensitive neuronal Ca2+ channel.
    Lundy PM; Frew R; Fuller TW; Hamilton MG
    Eur J Pharmacol; 1991 Jan; 206(1):61-8. PubMed ID: 1648498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological heterogeneity among calcium channels that subserve acetylcholine release in vertebrate forebrain.
    Vickroy TW; Schneider CJ; Hildreth JM
    Neuropharmacology; 1992 Mar; 31(3):307-9. PubMed ID: 1321360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes at pure cholinergic synaptosomes during the transmitter release induced by A-23187 in Torpedo marmorata. A freeze-fracture study.
    Egea G; Esquerda JE; Calvet R; Solsona C; Marsal J
    Cell Tissue Res; 1987 Apr; 248(1):207-14. PubMed ID: 3105889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opiates depress ACh and ATP release from cholinergic synaptosomes by blocking calcium uptake.
    Saltó C; Calvet R; Guitart X; Solsona C; Marsal J
    Toxicol Appl Pharmacol; 1990 Oct; 106(1):20-7. PubMed ID: 2251680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy metabolism and quantal acetylcholine release: effects of botulinum toxin, 1-fluoro-2,4-dinitrobenzene, and diamide in the Torpedo electric organ.
    Dunant Y; Loctin F; Marsal J; Muller D; Parducz A; Rabasseda X
    J Neurochem; 1988 Feb; 50(2):431-9. PubMed ID: 3121792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphine activates omega-conotoxin-sensitive Ca2+ channels to release adenosine from spinal cord synaptosomes.
    Cahill CM; White TD; Sawynok J
    J Neurochem; 1993 Mar; 60(3):894-901. PubMed ID: 7679729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ.
    Vyas S; Bradford HF
    Neurosci Lett; 1987 Nov; 82(1):58-64. PubMed ID: 2447530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.