BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15844443)

  • 1. A spreadsheet program for modeling quantitative structure-pharmacokinetic relationships for inhaled volatile organics in humans.
    Béliveau M; Krishnan K
    SAR QSAR Environ Res; 2005; 16(1-2):63-77. PubMed ID: 15844443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals.
    Béliveau M; Lipscomb J; Tardif R; Krishnan K
    Chem Res Toxicol; 2005 Mar; 18(3):475-85. PubMed ID: 15777087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats.
    Béliveau M; Tardif R; Krishnan K
    Toxicol Appl Pharmacol; 2003 Jun; 189(3):221-32. PubMed ID: 12791307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated QSPR-PBPK modelling approach for in vitro-in vivo extrapolation of pharmacokinetics in rats.
    Kamgang E; Peyret T; Krishnan K
    SAR QSAR Environ Res; 2008; 19(7-8):669-80. PubMed ID: 19061083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach.
    Nong A; Krishnan K
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children.
    Price K; Haddad S; Krishnan K
    J Toxicol Environ Health A; 2003 Mar; 66(5):417-33. PubMed ID: 12712630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure-based prediction of the steady-state blood concentrations of inhaled organics in rats.
    Béliveau M; Krishnan K
    Toxicol Mech Methods; 2005; 15(5):361-6. PubMed ID: 20021057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSARs for PBPK modelling of environmental contaminants.
    Peyret T; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically based modeling of the inhalation pharmacokinetics of ethylbenzene in B6C3F1 mice.
    Nong A; Charest-Tardif G; Tardif R; Lewis DF; Sweeney LM; Gargas ML; Krishnan K
    J Toxicol Environ Health A; 2007 Nov; 70(21):1838-48. PubMed ID: 17934956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat.
    Price K; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):107-28. PubMed ID: 21391144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically-based toxicokinetic modeling of durene (1,2,3,5-tetramethylbenzene) and isodurene (1,2,4,5-tetramethylbenzene) in humans.
    Jałowiecki P; Janasik B
    Int J Occup Med Environ Health; 2007; 20(2):155-65. PubMed ID: 17638682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting age-appropriate pharmacokinetics of six volatile organic compounds in the rat utilizing physiologically based pharmacokinetic modeling.
    Rodriguez CE; Mahle DA; Gearhart JM; Mattie DR; Lipscomb JC; Cook RS; Barton HA
    Toxicol Sci; 2007 Jul; 98(1):43-56. PubMed ID: 17426107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):131-7. PubMed ID: 8560466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics.
    Yoon M; Madden MC; Barton HA
    J Toxicol Environ Health A; 2007 Sep; 70(18):1527-41. PubMed ID: 17710613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene.
    Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tissue composition-based algorithm for predicting tissue:air partition coefficients of organic chemicals.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):126-30. PubMed ID: 8560465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicokinetics of inhaled propylene in mouse, rat, and human.
    Filser JG; Schmidbauer R; Rampf F; Baur CM; Pütz C; Csanády GA
    Toxicol Appl Pharmacol; 2000 Nov; 169(1):40-51. PubMed ID: 11076695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds.
    Pelekis M; Gephart LA; Lerman SE
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):12-20. PubMed ID: 11259175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.