BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 15845422)

  • 1. Role of glutathione transport processes in kidney function.
    Lash LH
    Toxicol Appl Pharmacol; 2005 May; 204(3):329-42. PubMed ID: 15845422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal glutathione transport: Identification of carriers, physiological functions, and controversies.
    Lash LH
    Biofactors; 2009; 35(6):500-8. PubMed ID: 19904718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers.
    Chen Z; Lash LH
    J Pharmacol Exp Ther; 1998 May; 285(2):608-18. PubMed ID: 9580605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal membrane transport of glutathione in toxicology and disease.
    Lash LH
    Vet Pathol; 2011 Mar; 48(2):408-19. PubMed ID: 20656901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of MRP2 and oatp1 in hepatocellular export of reduced glutathione.
    Ballatori N; Rebbeor JF
    Semin Liver Dis; 1998; 18(4):377-87. PubMed ID: 9875555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic mitochondrial glutathione: transport and role in disease and toxicity.
    Fernandez-Checa JC; Kaplowitz N
    Toxicol Appl Pharmacol; 2005 May; 204(3):263-73. PubMed ID: 15845418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats.
    Benipal B; Lash LH
    Biochem Pharmacol; 2013 May; 85(9):1379-88. PubMed ID: 23419872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter.
    Lash LH; Putt DA; Matherly LH
    J Pharmacol Exp Ther; 2002 Nov; 303(2):476-86. PubMed ID: 12388626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human organic anion transporter OAT1 is not responsible for glutathione transport but mediates transport of glutamate derivatives.
    Hagos Y; Burckhardt G; Burckhardt BC
    Am J Physiol Renal Physiol; 2013 Feb; 304(4):F403-9. PubMed ID: 23255614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane transport function in primary cultures of human proximal tubular cells.
    Lash LH; Putt DA; Cai H
    Toxicology; 2006 Dec; 228(2-3):200-18. PubMed ID: 16997449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathione.
    Lash LH; Putt DA; Xu F; Matherly LH
    Chem Biol Interact; 2007 Nov; 170(2):124-34. PubMed ID: 17719021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of expression of rat mitochondrial 2-oxoglutarate carrier in NRK-52E cells alters mitochondrial transport and accumulation of glutathione and susceptibility to chemically induced apoptosis.
    Xu F; Putt DA; Matherly LH; Lash LH
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1175-86. PubMed ID: 16291728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion.
    Coll O; Colell A; García-Ruiz C; Kaplowitz N; Fernández-Checa JC
    Hepatology; 2003 Sep; 38(3):692-702. PubMed ID: 12939596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of glutathione uptake, synthesis, and efflux pathways in the epithelium and endothelium of the rat cornea.
    Li B; Lee MS; Lee RS; Donaldson PJ; Lim JC
    Cornea; 2012 Nov; 31(11):1304-12. PubMed ID: 22314823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth.
    Lash LH; Hueni SE; Putt DA; Zalups RK
    Toxicol Sci; 2005 Dec; 88(2):630-44. PubMed ID: 16162843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of renal compensatory hypertrophy on mitochondrial energetics and redox status.
    Benipal B; Lash LH
    Biochem Pharmacol; 2011 Jan; 81(2):295-303. PubMed ID: 20959115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and functional characteristics of cultured renal epithelial cells from uninephrectomized rats: factors influencing nephrotoxicity.
    Lash LH; Putt DA; Zalups RK
    J Pharmacol Exp Ther; 2001 Feb; 296(2):243-51. PubMed ID: 11160604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death.
    Banjac A; Perisic T; Sato H; Seiler A; Bannai S; Weiss N; Kölle P; Tschoep K; Issels RD; Daniel PT; Conrad M; Bornkamm GW
    Oncogene; 2008 Mar; 27(11):1618-28. PubMed ID: 17828297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport.
    Chen Z; Putt DA; Lash LH
    Arch Biochem Biophys; 2000 Jan; 373(1):193-202. PubMed ID: 10620338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular glutathione regulates taurocholate transport in HepG2 cells.
    Lee TK; Hammond CL; Ballatori N
    Toxicol Appl Pharmacol; 2001 Aug; 174(3):207-15. PubMed ID: 11485381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.