BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 15845582)

  • 1. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.
    Isaeva EV; Shkryl VM; Shirokova N
    J Physiol; 2005 Jun; 565(Pt 3):855-72. PubMed ID: 15845582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres.
    Martins AS; Shkryl VM; Nowycky MC; Shirokova N
    J Physiol; 2008 Jan; 586(1):197-210. PubMed ID: 17974587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The changes in Ca2+ sparks associated with measured modifications of intra-store Ca2+ concentration in skeletal muscle.
    Launikonis BS; Zhou J; Santiago D; Brum G; Ríos E
    J Gen Physiol; 2006 Jul; 128(1):45-54. PubMed ID: 16769796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes.
    Yan Y; Liu J; Wei C; Li K; Xie W; Wang Y; Cheng H
    Cardiovasc Res; 2008 Jan; 77(2):432-41. PubMed ID: 18006452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes.
    Sheehan KA; Zima AV; Blatter LA
    J Physiol; 2006 May; 572(Pt 3):799-809. PubMed ID: 16484302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling?
    Zhou J; Launikonis BS; Ríos E; Brum G
    J Gen Physiol; 2004 Oct; 124(4):409-28. PubMed ID: 15452201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes.
    Zima AV; Copello JA; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):727-41. PubMed ID: 14724208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'In situ' high pressure confocal Ca(2+)-fluorescence microscopy in skeletal muscle: a new method to study pressure limits in mammalian cells.
    Friedrich O; Wegner FV; Hartmann M; Frey B; Sommer K; Ludwig H; Fink RH
    Undersea Hyperb Med; 2006; 33(3):181-95. PubMed ID: 16869532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle.
    Fryer MW; Stephenson DG
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):357-70. PubMed ID: 8782101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres.
    Isaeva EV; Shirokova N
    J Physiol; 2003 Mar; 547(Pt 2):453-62. PubMed ID: 12562922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A repetitive mode of activation of discrete Ca2+ release events (Ca2+ sparks) in frog skeletal muscle fibres.
    Klein MG; Lacampagne A; Schneider MF
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):391-411. PubMed ID: 10050007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers.
    Shkryl VM; Martins AS; Ullrich ND; Nowycky MC; Niggli E; Shirokova N
    Pflugers Arch; 2009 Sep; 458(5):915-28. PubMed ID: 19387681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes.
    Lukyanenko V; Viatchenko-Karpinski S; Smirnov A; Wiesner TF; Györke S
    Biophys J; 2001 Aug; 81(2):785-98. PubMed ID: 11463625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress enhances Ca
    Kim JC; Wang J; Son MJ; Woo SH
    Biochim Biophys Acta Mol Cell Res; 2017 Jun; 1864(6):1121-1131. PubMed ID: 28213332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local calcium release in mammalian skeletal muscle.
    Shirokova N; García J; Ríos E
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):377-84. PubMed ID: 9763628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SparkMaster: automated calcium spark analysis with ImageJ.
    Picht E; Zima AV; Blatter LA; Bers DM
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C1073-81. PubMed ID: 17376815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle.
    Zhou J; Yi J; Royer L; Launikonis BS; González A; García J; Ríos E
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C539-53. PubMed ID: 16148029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle.
    Shkryl VM; Shirokova N
    J Biol Chem; 2006 Jan; 281(3):1547-54. PubMed ID: 16216882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.