These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1133 related articles for article (PubMed ID: 15845844)

  • 41. GPCR Signaling: β-arrestins Kiss and Remember.
    Ranjan R; Gupta P; Shukla AK
    Curr Biol; 2016 Apr; 26(7):R285-8. PubMed ID: 27046816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arrestins and protein ubiquitination.
    Kommaddi RP; Shenoy SK
    Prog Mol Biol Transl Sci; 2013; 118():175-204. PubMed ID: 23764054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring interactions between G-protein-coupled receptors and beta-arrestins.
    Pfleger KD; Dalrymple MB; Dromey JR; Eidne KA
    Biochem Soc Trans; 2007 Aug; 35(Pt 4):764-6. PubMed ID: 17635143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR.
    Miller WE; Houtz DA; Nelson CD; Kolattukudy PE; Lefkowitz RJ
    J Biol Chem; 2003 Jun; 278(24):21663-71. PubMed ID: 12668664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arrestins as regulators of kinases and phosphatases.
    Luttrell LM; Miller WE
    Prog Mol Biol Transl Sci; 2013; 118():115-47. PubMed ID: 23764052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of G protein-coupled receptor signaling by scaffold proteins.
    Hall RA; Lefkowitz RJ
    Circ Res; 2002 Oct; 91(8):672-80. PubMed ID: 12386143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3.
    McDonald PH; Chow CW; Miller WE; Laporte SA; Field ME; Lin FT; Davis RJ; Lefkowitz RJ
    Science; 2000 Nov; 290(5496):1574-7. PubMed ID: 11090355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors.
    Anborgh PH; Seachrist JL; Dale LB; Ferguson SS
    Mol Endocrinol; 2000 Dec; 14(12):2040-53. PubMed ID: 11117533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. c-Src is activated by the epidermal growth factor receptor in a pathway that mediates JNK and ERK activation by gonadotropin-releasing hormone in COS7 cells.
    Kraus S; Benard O; Naor Z; Seger R
    J Biol Chem; 2003 Aug; 278(35):32618-30. PubMed ID: 12750372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oligomerization of wild type and nonfunctional mutant angiotensin II type I receptors inhibits galphaq protein signaling but not ERK activation.
    Hansen JL; Theilade J; Haunsø S; Sheikh SP
    J Biol Chem; 2004 Jun; 279(23):24108-15. PubMed ID: 15056658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation.
    Barnes WG; Reiter E; Violin JD; Ren XR; Milligan G; Lefkowitz RJ
    J Biol Chem; 2005 Mar; 280(9):8041-50. PubMed ID: 15611106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Green fluorescent protein-tagged beta-arrestin translocation as a measure of G protein-coupled receptor activation.
    Ferguson SS; Caron MG
    Methods Mol Biol; 2004; 237():121-6. PubMed ID: 14501044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
    Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ
    J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arrestins come of age: a personal historical perspective.
    Lefkowitz RJ
    Prog Mol Biol Transl Sci; 2013; 118():3-18. PubMed ID: 23764048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1.
    Mancini AD; Bertrand G; Vivot K; Carpentier É; Tremblay C; Ghislain J; Bouvier M; Poitout V
    J Biol Chem; 2015 Aug; 290(34):21131-21140. PubMed ID: 26157145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beta-arrestin multimers: does a crowd help or hinder function?
    DeFea KA
    Biochem J; 2008 Jul; 413(1):e1-3. PubMed ID: 18537791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental systems for studying the role of G-protein-coupled receptors in receptor tyrosine kinase signal transduction.
    Pyne NJ; Waters C; Moughal NA; Sambi B; Connell M; Pyne S
    Methods Enzymol; 2004; 390():451-75. PubMed ID: 15488194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arrestin interactions with G protein-coupled receptors.
    Lohse MJ; Hoffmann C
    Handb Exp Pharmacol; 2014; 219():15-56. PubMed ID: 24292823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. β-Arrestins: modulators of small GTPase activation and function.
    Claing A
    Prog Mol Biol Transl Sci; 2013; 118():149-74. PubMed ID: 23764053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural insights into emergent signaling modes of G protein-coupled receptors.
    Sutkeviciute I; Vilardaga JP
    J Biol Chem; 2020 Aug; 295(33):11626-11642. PubMed ID: 32571882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 57.