These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 15846373)
1. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Giordano A; Calvani M; Petillo O; Grippo P; Tuccillo F; Melone MA; Bonelli P; Calarco A; Peluso G Cell Death Differ; 2005 Jun; 12(6):603-13. PubMed ID: 15846373 [TBL] [Abstract][Full Text] [Related]
2. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Gonzalvez F; Pariselli F; Dupaigne P; Budihardjo I; Lutter M; Antonsson B; Diolez P; Manon S; Martinou JC; Goubern M; Wang X; Bernard S; Petit PX Cell Death Differ; 2005 Jun; 12(6):614-26. PubMed ID: 15818416 [TBL] [Abstract][Full Text] [Related]
3. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Velasco G; Geelen MJ; Guzmán M Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810 [TBL] [Abstract][Full Text] [Related]
4. Role of cardiolipin on tBid and tBid/Bax synergistic effects on yeast mitochondria. Gonzalvez F; Bessoule JJ; Rocchiccioli F; Manon S; Petit PX Cell Death Differ; 2005 Jun; 12(6):659-67. PubMed ID: 15818414 [TBL] [Abstract][Full Text] [Related]
5. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. Sugden MC; Priestman DA; Orfali KA; Holness MJ Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724 [TBL] [Abstract][Full Text] [Related]
6. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064 [TBL] [Abstract][Full Text] [Related]
7. Impact of protein restriction on the regulation of cardiac carnitine palmitoyltransferase by malonyl-CoA. Holness MJ; Priestman DA; Sugden MC J Mol Cell Cardiol; 1998 Jul; 30(7):1381-90. PubMed ID: 9710806 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo's hypothesis. Menendez JA; Colomer R; Lupu R Med Hypotheses; 2005; 64(2):337-41. PubMed ID: 15607568 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis. Aires CC; Ijlst L; Stet F; Prip-Buus C; de Almeida IT; Duran M; Wanders RJ; Silva MF Biochem Pharmacol; 2010 Mar; 79(5):792-9. PubMed ID: 19854160 [TBL] [Abstract][Full Text] [Related]
10. Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation. Morash AJ; McClelland GB Physiol Biochem Zool; 2011; 84(6):625-33. PubMed ID: 22030855 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Thupari JN; Pinn ML; Kuhajda FP Biochem Biophys Res Commun; 2001 Jul; 285(2):217-23. PubMed ID: 11444828 [TBL] [Abstract][Full Text] [Related]
12. The interaction between tBid and cardiolipin or monolysocardiolipin. Liu J; Durrant D; Yang HS; He Y; Whitby FG; Myszka DG; Lee RM Biochem Biophys Res Commun; 2005 May; 330(3):865-70. PubMed ID: 15809076 [TBL] [Abstract][Full Text] [Related]
13. Cardiolipin provides specificity for targeting of tBid to mitochondria. Lutter M; Fang M; Luo X; Nishijima M; Xie X; Wang X Nat Cell Biol; 2000 Oct; 2(10):754-61. PubMed ID: 11025668 [TBL] [Abstract][Full Text] [Related]
14. The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Liu J; Weiss A; Durrant D; Chi NW; Lee RM Apoptosis; 2004 Sep; 9(5):533-41. PubMed ID: 15314281 [TBL] [Abstract][Full Text] [Related]
15. Carnitine palmitoyl transferase I and the control of beta-oxidation in heart mitochondria. Eaton S; Bartlett K; Quant PA Biochem Biophys Res Commun; 2001 Jul; 285(2):537-9. PubMed ID: 11444876 [TBL] [Abstract][Full Text] [Related]
16. Hepatic carnitine palmitoyltransferase-I has two independent inhibitory binding sites for regulation of fatty acid oxidation. Kashfi K; Mynatt RL; Cook GA Biochim Biophys Acta; 1994 May; 1212(2):245-52. PubMed ID: 8180250 [TBL] [Abstract][Full Text] [Related]
17. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation. Bentebibel A; Sebastián D; Herrero L; López-Viñas E; Serra D; Asins G; Gómez-Puertas P; Hegardt FG Biochemistry; 2006 Apr; 45(14):4339-50. PubMed ID: 16584169 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Bruce CR; Brolin C; Turner N; Cleasby ME; van der Leij FR; Cooney GJ; Kraegen EW Am J Physiol Endocrinol Metab; 2007 Apr; 292(4):E1231-7. PubMed ID: 17179390 [TBL] [Abstract][Full Text] [Related]
20. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. Kim JY; Koves TR; Yu GS; Gulick T; Cortright RN; Dohm GL; Muoio DM Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1014-22. PubMed ID: 11934665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]