These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15846436)

  • 41. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor.
    Pérez López B; Merkoçi A
    Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film.
    Liu S; Lin B; Yang X; Zhang Q
    J Phys Chem B; 2007 Feb; 111(5):1182-8. PubMed ID: 17266273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzymatic amplification detection of peanut allergen Ara h1 using a stem-loop DNA biosensor modified with a chitosan-mutiwalled carbon nanotube nanocomposite and spongy gold film.
    Sun X; Jia M; Ji J; Guan L; Zhang Y; Tang L; Li Z
    Talanta; 2015 Jan; 131():521-7. PubMed ID: 25281135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon nanofiber-based glucose biosensor.
    Vamvakaki V; Tsagaraki K; Chaniotakis N
    Anal Chem; 2006 Aug; 78(15):5538-42. PubMed ID: 16878893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme.
    Muguruma H; Shibayama Y; Matsui Y
    Biosens Bioelectron; 2008 Jan; 23(6):827-32. PubMed ID: 17935968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor.
    Tkac J; Whittaker JW; Ruzgas T
    Biosens Bioelectron; 2007 Mar; 22(8):1820-4. PubMed ID: 16973345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly.
    Luo XL; Xu JJ; Zhang Q; Yang GJ; Chen HY
    Biosens Bioelectron; 2005 Jul; 21(1):190-6. PubMed ID: 15967368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A glucose biosensor based on Prussian blue/chitosan hybrid film.
    Wang X; Gu H; Yin F; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1527-30. PubMed ID: 19010659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite.
    Wang S; Tan Y; Zhao D; Liu G
    Biosens Bioelectron; 2008 Jul; 23(12):1781-7. PubMed ID: 18387292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide.
    Chen X; Li C; Liu Y; Du Z; Xu S; Li L; Zhang M; Wang T
    Talanta; 2008 Oct; 77(1):37-41. PubMed ID: 18804595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemistry and voltammetry of procaine using a carbon nanotube film coated electrode.
    Wu K; Wang H; Chen F; Hu S
    Bioelectrochemistry; 2006 May; 68(2):144-9. PubMed ID: 16043422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.
    Wang SF; Xu Q
    Bioelectrochemistry; 2007 May; 70(2):296-300. PubMed ID: 16720109
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition.
    Li F; Wang Z; Chen W; Zhang S
    Biosens Bioelectron; 2009 Jun; 24(10):3030-5. PubMed ID: 19395252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical imprinted sensor for determination of oleanic acid based on poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles.
    Hu Y; Zhang Z; Li J; Zhang H; Luo L; Yao S
    Biosens Bioelectron; 2012 Jan; 31(1):190-6. PubMed ID: 22099956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polyaniline-carbon nanotube composite film for cholesterol biosensor.
    Dhand C; Arya SK; Datta M; Malhotra BD
    Anal Biochem; 2008 Dec; 383(2):194-9. PubMed ID: 18817744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode.
    Wang HS; Li TH; Jia WL; Xu HY
    Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing.
    Liu Z; Wang J; Xie D; Chen G
    Small; 2008 Apr; 4(4):462-6. PubMed ID: 18383578
    [No Abstract]   [Full Text] [Related]  

  • 58. A microbial biosensor based on bacterial cells immobilized on chitosan matrix.
    Odaci D; Timur S; Telefoncu A
    Bioelectrochemistry; 2009 Apr; 75(1):77-82. PubMed ID: 19196553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An unmediated H2O2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes.
    Zhao GC; Zhang L; Wei XW
    Anal Biochem; 2004 Jun; 329(1):160-1. PubMed ID: 15136183
    [No Abstract]   [Full Text] [Related]  

  • 60. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.
    Deng C; Chen J; Chen X; Xiao C; Nie L; Yao S
    Biosens Bioelectron; 2008 Mar; 23(8):1272-7. PubMed ID: 18178424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.