These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15846476)

  • 21. Dynamic rheology as a quantitative method for real-time tracking of excipient solvation in non-aqueous hydroxypropylcellulose topical gels.
    Potuck A; Leming R; Lam S
    Pharm Dev Technol; 2019 Apr; 24(4):521-527. PubMed ID: 30035650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheological Characterization of Ethylcellulose-Based Melts for Pharmaceutical Applications.
    Baldi F; Ragnoli J; Zinesi D; Bignotti F; Briatico-Vangosa F; Casati F; Loreti G; Melocchi A; Zema L
    AAPS PharmSciTech; 2017 Apr; 18(3):855-866. PubMed ID: 27357421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.
    Srichan T; Phaechamud T
    AAPS PharmSciTech; 2017 Jan; 18(1):194-201. PubMed ID: 26951505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery.
    Gratieri T; Gelfuso GM; Rocha EM; Sarmento VH; de Freitas O; Lopez RF
    Eur J Pharm Biopharm; 2010 Jun; 75(2):186-93. PubMed ID: 20188828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelastic evaluation of topical creams containing microcrystalline cellulose/sodium carboxymethyl cellulose as stabilizer.
    Adeyeye MC; Jain AC; Ghorab MK; Reilly WJ
    AAPS PharmSciTech; 2002; 3(2):E8. PubMed ID: 12916945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surelease as granulating liquid in preparation of sustained release matrices of ethylcellulose and theophylline.
    Afrasiabi Garekani H; Faghihnia Torshizi M; Sadeghi F
    Drug Dev Ind Pharm; 2015; 41(10):1655-60. PubMed ID: 25402967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic behavior of cellulose acetate in a mixed solvent system.
    Appaw C; Gilbert RD; Khan SA; Kadla JF
    Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property.
    Wang R; Liu XY; Xiong J; Li J
    J Phys Chem B; 2006 Apr; 110(14):7275-80. PubMed ID: 16599498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mucoadhesion, hydration and rheological properties of non-aqueous delivery systems (NADS) for the oral cavity.
    Zaman MA; Martin GP; Rees GD
    J Dent; 2008 May; 36(5):351-9. PubMed ID: 18343013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Novel Shortenings Structured by Ethylcellulose Oleogels.
    Ye X; Li P; Lo YM; Fu H; Cao Y
    J Food Sci; 2019 Jun; 84(6):1456-1464. PubMed ID: 31107551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vaginal gel drug delivery systems: understanding rheological characteristics and performance.
    Yu T; Malcolm K; Woolfson D; Jones DS; Andrews GP
    Expert Opin Drug Deliv; 2011 Oct; 8(10):1309-22. PubMed ID: 21728886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes.
    Ozkan S; Gillece TW; Senak L; Moore DJ
    Int J Cosmet Sci; 2012 Apr; 34(2):193-201. PubMed ID: 22268865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethylcellulose Oleogels: Structure, Functionality, and Food Applications.
    Gravelle AJ; Marangoni AG
    Adv Food Nutr Res; 2018; 84():1-56. PubMed ID: 29555066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.
    Keshavarz M; Kaffashi B
    Pharm Dev Technol; 2014 Dec; 19(8):952-9. PubMed ID: 24160773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters.
    Zetzl AK; Marangoni AG; Barbut S
    Food Funct; 2012 Mar; 3(3):327-37. PubMed ID: 22377795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy.
    Gandra SC; Nguyen S; Nazzal S; Alayoubi A; Jung R; Nesamony J
    Pharm Dev Technol; 2015 Jan; 20(1):41-9. PubMed ID: 24160864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.
    Schoener CA; Curtis-Fisk JL; Rogers TL; Tate MP
    Drug Dev Ind Pharm; 2016 Oct; 42(10):1700-7. PubMed ID: 27095283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Research in rheological properties of four types of ophthalmic preparations].
    Wu XL; Ma JF; Fan XY; Wang LB; Peng XS
    Yao Xue Xue Bao; 2017 Jan; 52(1):146-52. PubMed ID: 29911815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on development of controlled delivery of combination drug(s) to periodontal pocket.
    Tiwari G; Tiwari R; Rai AK
    Indian J Dent Res; 2010; 21(1):72-83. PubMed ID: 20427912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.