BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15846775)

  • 1. Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.
    Williams SV; Adams J; Coulter J; Summersgill BM; Shipley J; Knowles MA
    Genes Chromosomes Cancer; 2005 Aug; 43(4):315-28. PubMed ID: 15846775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.
    Ratliff TL
    J Urol; 2005 Nov; 174(5):2065. PubMed ID: 16217396
    [No Abstract]   [Full Text] [Related]  

  • 3. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization.
    Hurst CD; Fiegler H; Carr P; Williams S; Carter NP; Knowles MA
    Oncogene; 2004 Mar; 23(12):2250-63. PubMed ID: 14968109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonrandom chromosomal changes in transitional cell carcinoma of the bladder.
    Gibas Z; Prout GR; Connolly JG; Pontes JE; Sandberg AA
    Cancer Res; 1984 Mar; 44(3):1257-64. PubMed ID: 6692407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines.
    Karpova MB; Schoumans J; Blennow E; Ernberg I; Henter JI; Smirnov AF; Nordenskjöld M; Fadeel B
    Int J Oncol; 2006 Mar; 28(3):605-17. PubMed ID: 16465364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Karyotypic characterization of urinary bladder transitional cell carcinomas.
    Fadl-Elmula I; Gorunova L; Mandahl N; Elfving P; Lundgren R; Mitelman F; Heim S
    Genes Chromosomes Cancer; 2000 Nov; 29(3):256-65. PubMed ID: 10992300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cytogenetic subgroups and karyotypic pathways in transitional cell carcinoma.
    Höglund M; Säll T; Heim S; Mitelman F; Mandahl N; Fadl-Elmula I
    Cancer Res; 2001 Nov; 61(22):8241-6. PubMed ID: 11719456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome signatures of colon carcinoma cell lines.
    Kleivi K; Teixeira MR; Eknaes M; Diep CB; Jakobsen KS; Hamelin R; Lothe RA
    Cancer Genet Cytogenet; 2004 Dec; 155(2):119-31. PubMed ID: 15571797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [From cytogenetics to cytogenomics of bladder cancers].
    Léonard C; Huret JL; Gfco ;
    Bull Cancer; 2002 Feb; 89(2):166-73. PubMed ID: 11888856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma.
    Strefford JC; Stasevich I; Lane TM; Lu YJ; Oliver T; Young BD
    Cancer Genet Cytogenet; 2005 May; 159(1):1-9. PubMed ID: 15860350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The patterns of the karyotypic evolution of cells in culture].
    Mamaeva SE
    Tsitologiia; 1996; 38(8):787-814. PubMed ID: 9027012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of chromosomal aberrations in urinary bladder tumours and adjacent urothelium.
    Steidl C; Simon R; Bürger H; Brinkschmidt C; Hertle L; Böcker W; Terpe HJ
    J Pathol; 2002 Sep; 198(1):115-20. PubMed ID: 12210071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of genetic alterations in primary bladder carcinoma with dual-color and multiplex fluorescence in situ hybridization.
    Stamouli MI; Panani AD; Ferti AD; Petraki C; Oliver RT; Raptis SA; Young BD
    Cancer Genet Cytogenet; 2004 Mar; 149(2):107-13. PubMed ID: 15036885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal characterization and isoenzyme pattern of non-malignant and malignant human urothelial cell lines.
    Debiec-Rychter M; Christensen B; Kieler J; Wang CY
    Anticancer Res; 1986; 6(5):1237-44. PubMed ID: 3800330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetic characterization of seven human cancer cell lines by combining G- and R-banding, M-FISH, CGH and chromosome- and locus-specific FISH.
    Cottier M; Tchirkov A; Perissel B; Giollant M; Campos L; Vago P
    Int J Mol Med; 2004 Oct; 14(4):483-95. PubMed ID: 15375617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral karyotype (SKY) analysis of human prostate carcinoma cell lines.
    van Bokhoven A; Caires A; Maria MD; Schulte AP; Lucia MS; Nordeen SK; Miller GJ; Varella-Garcia M
    Prostate; 2003 Nov; 57(3):226-44. PubMed ID: 14518030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence in situ hybridization detects frequent chromosome 9 deletions and aneuploidy in histologically normal urothelium of bladder cancer patients.
    Obermann EC; Meyer S; Hellge D; Zaak D; Filbeck T; Stoehr R; Hofstaedter F; Hartmann A; Knuechel R
    Oncol Rep; 2004 Apr; 11(4):745-51. PubMed ID: 15010867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer.
    Vukovic B; Beheshti B; Park P; Lim G; Bayani J; Zielenska M; Squire JA
    Cytogenet Genome Res; 2007; 116(1-2):1-11. PubMed ID: 17268171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel recurrent structural chromosomal aberrations in primary bladder cancer.
    Panani AD; Ferti AD; Raptis SA; Roussos C
    Anticancer Res; 2004; 24(5A):2967-74. PubMed ID: 15517903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization.
    Uchida K; Oga A; Okafuji M; Mihara M; Kawauchi S; Furuya T; Chochi Y; Ueyama Y; Sasaki K
    Cancer Genet Cytogenet; 2006 Jun; 167(2):109-16. PubMed ID: 16737909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.