These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High hydride count rhodium octahedra, [Rh6(PR3)6H12][BArF4]2: synthesis, structures, and reversible hydrogen uptake under mild conditions. Brayshaw SK; Ingleson MJ; Green JC; McIndoe JS; Raithby PR; Kociok-Köhn G; Weller AS J Am Chem Soc; 2006 May; 128(18):6247-63. PubMed ID: 16669695 [TBL] [Abstract][Full Text] [Related]
3. Intramolecular alkyl phosphine dehydrogenation in cationic rhodium complexes of tris(cyclopentylphosphine). Douglas TM; Brayshaw SK; Dallanegra R; Kociok-Köhn G; Macgregor SA; Moxham GL; Weller AS; Wondimagegn T; Vadivelu P Chemistry; 2008; 14(3):1004-22. PubMed ID: 17992682 [TBL] [Abstract][Full Text] [Related]
4. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir). Tang CY; Thompson AL; Aldridge S J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531 [TBL] [Abstract][Full Text] [Related]
5. Amine- and dimeric amino-borane complexes of the {Rh(P(i)Pr3)2}+ fragment and their relevance to the transition-metal-mediated dehydrocoupling of amine-boranes. Chaplin AB; Weller AS Inorg Chem; 2010 Feb; 49(3):1111-21. PubMed ID: 20052982 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of a cis-dihydrogen/hydride complex of iridium. Nanishankar HV; Dutta S; Nethaji M; Jagirdar BR Inorg Chem; 2005 Sep; 44(18):6203-10. PubMed ID: 16124797 [TBL] [Abstract][Full Text] [Related]
7. Cationic rhodium mono-phosphine fragments partnered with carborane monoanions [closo-CB11H6X6]- (X = H, Br). Synthesis, structures and reactivity with alkenes. Molinos E; Brayshaw SK; Kociok-Köhn G; Weller AS Dalton Trans; 2007 Nov; (42):4829-44. PubMed ID: 17955135 [TBL] [Abstract][Full Text] [Related]
8. Binding H2, N2, H-, and BH3 to transition-metal sulfur sites: synthesis and properties of [RuL(PR3)(N2Me2S2)] Complexes (L=eta2-H2, H-, BH3; R=Cy, iPr). Sellmann D; Hille A; Heinemann FW; Moll M; Reiher M; Hess BA; Bauer W Chemistry; 2004 Sep; 10(17):4214-24. PubMed ID: 15352104 [TBL] [Abstract][Full Text] [Related]
9. Using EPR to follow reversible dihydrogen addition to paramagnetic clusters of high hydride count: [Rh(6)(PCy(3))(6)H(12)](+) and [Rh(6)(PCy(3))(6)H(14)](+). Hiney RM; Chaplin AB; Harmer J; Green JC; Weller AS Dalton Trans; 2010 Feb; 39(7):1726-33. PubMed ID: 20449414 [TBL] [Abstract][Full Text] [Related]
10. Sequential reduction of high hydride count octahedral rhodium clusters [Rh6(PR3)6H12][BArF4]2: redox-switchable hydrogen storage. Brayshaw SK; Harrison A; McIndoe JS; Marken F; Raithby PR; Warren JE; Weller AS J Am Chem Soc; 2007 Feb; 129(6):1793-804. PubMed ID: 17284009 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, neutron structure, and reactivity of the bis(dihydrogen) complex RuH2(eta(2)-H2)2(PCyp3)2 stabilized by two tricyclopentylphosphines. Grellier M; Vendier L; Chaudret B; Albinati A; Rizzato S; Mason S; Sabo-Etienne S J Am Chem Soc; 2005 Dec; 127(50):17592-3. PubMed ID: 16351074 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and reactivity of fluoro complexes: Part 2. Rhodium(I) fluoro complexes with alkene and phosphine ligands. Synthesis of the first isolated rhodium(I) bifluoride complexes. Structure of [Rh3(mu3-OH)2(COD)(3)](HF2) by X-ray powder diffraction. Vicente J; Gil-Rubio J; Bautista D; Sironi A; Masciocchi N Inorg Chem; 2004 Sep; 43(18):5665-75. PubMed ID: 15332818 [TBL] [Abstract][Full Text] [Related]
14. Proton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabile P,N ligands: experimental and density functional theory studies. Jiménez-Tenorio M; Puerta MC; Valerga P; Moncho S; Ujaque G; Lledós A Inorg Chem; 2010 Jul; 49(13):6035-57. PubMed ID: 20524695 [TBL] [Abstract][Full Text] [Related]
15. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? Abbel R; Abdur-Rashid K; Faatz M; Hadzovic A; Lough AJ; Morris RH J Am Chem Soc; 2005 Feb; 127(6):1870-82. PubMed ID: 15701022 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study on the mechanism of H2 activation mediated by two transition metal thiolate complexes: homolytic for Ir, heterolytic for Rh. Tao J; Li S Dalton Trans; 2010 Jan; 39(3):857-63. PubMed ID: 20066230 [TBL] [Abstract][Full Text] [Related]
17. Facile synthetic access to rhenium(II) complexes: activation of carbon-bromine bonds by single-electron transfer. Jiang Y; Blacque O; Fox T; Frech CM; Berke H Chemistry; 2010 Feb; 16(7):2240-9. PubMed ID: 20066700 [TBL] [Abstract][Full Text] [Related]
18. Pincer phosphine complexes of ruthenium: formation of Ru(P-O-P)(PPh3)HCl (P-O-P = xantphos, DPEphos, (Ph2PCH2CH2)2O) and Ru(dppf)(PPh3)HCl and characterization of cationic dioxygen, dihydrogen, dinitrogen, and arene coordinated phosphine products. Ledger AE; Moreno A; Ellul CE; Mahon MF; Pregosin PS; Whittlesey MK; Williams JM Inorg Chem; 2010 Aug; 49(16):7244-56. PubMed ID: 20575584 [TBL] [Abstract][Full Text] [Related]
19. Half-sandwich hydride complexes of ruthenium with bidentate phosphinoamine ligands: proton-transfer reactions to [(C5R5)RuH(L)] [R = H, Me; L = dippae, (R,R)-dippach]. Jiménez-Tenorio M; Palacios MD; Puerta MC; Valerga P Inorg Chem; 2007 Feb; 46(3):1001-12. PubMed ID: 17257044 [TBL] [Abstract][Full Text] [Related]
20. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand. Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]