BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 15847428)

  • 1. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.
    Polanams J; Ray AD; Watt RK
    Inorg Chem; 2005 May; 44(9):3203-9. PubMed ID: 15847428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron loading into ferritin can be stimulated or inhibited by the presence of cations and anions: a specific role for phosphate.
    Cutler C; Bravo A; Ray AD; Watt RK
    J Inorg Biochem; 2005 Dec; 99(12):2270-5. PubMed ID: 16203038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion deposition into ferritin.
    Hilton RJ; Zhang B; Martineau LN; Watt GD; Watt RK
    J Inorg Biochem; 2012 Mar; 108():8-14. PubMed ID: 22265833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ferroxidase center is essential for ferritin iron loading in the presence of phosphate and minimizes side reactions that form Fe(III)-phosphate colloids.
    Hilton RJ; David Andros N; Watt RK
    Biometals; 2012 Apr; 25(2):259-73. PubMed ID: 22012445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the unusual kinetics of iron deposition in human H-chain ferritin.
    Bou-Abdallah F; Zhao G; Mayne HR; Arosio P; Chasteen ND
    J Am Chem Soc; 2005 Mar; 127(11):3885-93. PubMed ID: 15771525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate of iron transfer through the horse spleen ferritin shell determined by the rate of formation of Prussian Blue and Fe-desferrioxamine within the ferritin cavity.
    Zhang B; Watt RK; Gálvez N; Domínguez-Vera JM; Watt GD
    Biophys Chem; 2006 Mar; 120(2):96-105. PubMed ID: 16314026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferritin iron mineralization proceeds by different mechanisms in MOPS and imidazole buffers.
    Snow CL; Martineau LN; Hilton RJ; Brown S; Farrer J; Boerio-Goates J; Woodfield BF; Watt RK
    J Inorg Biochem; 2011 Jul; 105(7):972-7. PubMed ID: 21561591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic iron deposition into horse spleen, recombinant human heavy and light and bacteria ferritins by large oxidants.
    Zhang B; Watt GD
    J Inorg Biochem; 2007 Nov; 101(11-12):1676-85. PubMed ID: 17804076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for iron mineralization by bacterioferritin.
    Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE
    J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of iron deposition in horse spleen ferritin using H2O2 and O2 as oxidants.
    Lowery TJ; Bunker J; Zhang B; Costen R; Watt GD
    Biophys Chem; 2004 Oct; 111(2):173-81. PubMed ID: 15381314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide.
    Zhao G; Bou-Abdallah F; Arosio P; Levi S; Janus-Chandler C; Chasteen ND
    Biochemistry; 2003 Mar; 42(10):3142-50. PubMed ID: 12627982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: structural and size-distribution analyses.
    Kasyutich O; Ilari A; Fiorillo A; Tatchev D; Hoell A; Ceci P
    J Am Chem Soc; 2010 Mar; 132(10):3621-7. PubMed ID: 20170158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mu-1,2-peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer.
    Zhao G; Su M; Chasteen ND
    J Mol Biol; 2005 Sep; 352(2):467-77. PubMed ID: 16095616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin.
    Zhang B; Harb JN; Davis RC; Kim JW; Chu SH; Choi S; Miller T; Watt GD
    Inorg Chem; 2005 May; 44(10):3738-45. PubMed ID: 15877458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The putative "nucleation site" in human H-chain ferritin is not required for mineralization of the iron core.
    Bou-Abdallah F; Biasiotto G; Arosio P; Chasteen ND
    Biochemistry; 2004 Apr; 43(14):4332-7. PubMed ID: 15065877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage.
    Klem MT; Mosolf J; Young M; Douglas T
    Inorg Chem; 2008 Apr; 47(7):2237-9. PubMed ID: 18307300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy of selected tsumcorite Pb(Zn,Fe3+)2(AsO4)2(OH,H2O) minerals--implications for arsenate accumulation.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():224-30. PubMed ID: 22074886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Phosphate and Ferritin Subunit Composition on the Kinetics, Structure, and Reactivity of the Iron Core in Human Homo- and Heteropolymer Ferritins.
    Reutovich AA; Srivastava AK; Smith GL; Foucher A; Yates DM; Stach EA; Papaefthymiou GC; Arosio P; Bou-Abdallah F
    Biochemistry; 2022 Oct; 61(19):2106-2117. PubMed ID: 36099002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses.
    Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I
    J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.