These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15847546)

  • 1. Dielectric relaxation time of bulk water at 136-140 K, background loss and crystallization effects.
    Johari GP
    J Chem Phys; 2005 Apr; 122(14):144508. PubMed ID: 15847546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State of water at 136 K determined by its relaxation time.
    Johari GP
    Phys Chem Chem Phys; 2005 Mar; 7(6):1091-5. PubMed ID: 19791317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-like relaxation in hyperquenched water at < or = 140 K.
    Kohl I; Bachmann L; Hallbrucker A; Mayer E; Loerting T
    Phys Chem Chem Phys; 2005 Sep; 7(17):3210-20. PubMed ID: 16240034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Behaviour: glass transition in hyperquenched water?
    Kohl I; Bachmann L; Mayer E; Hallbrucker A; Loerting T
    Nature; 2005 May; 435(7041):E1; discussion E1-2. PubMed ID: 15917753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the use of relaxation times for comparing ultraviscous liquid dynamics.
    Johari GP; Aji DP
    J Chem Phys; 2008 Aug; 129(5):056101. PubMed ID: 18698927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glass transition and dielectric secondary relaxation of fructose-water mixtures.
    Shinyashiki N; Shinohara M; Iwata Y; Goto T; Oyama M; Suzuki S; Yamamoto W; Yagihara S; Inoue T; Oyaizu S; Yamamoto S; Ngai KL; Capaccioli S
    J Phys Chem B; 2008 Dec; 112(48):15470-7. PubMed ID: 18991437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50 degrees C.
    Behrends R; Fuchs K; Kaatze U; Hayashi Y; Feldman Y
    J Chem Phys; 2006 Apr; 124(14):144512. PubMed ID: 16626219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperquenched glassy water and hyperquenched glassy ethanol probed by single molecule spectroscopy.
    Reinot T; Dang NC; Jankowiak R
    J Phys Chem B; 2009 Apr; 113(13):4303-13. PubMed ID: 19249843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific heat relaxation of an alcohol and implications for dielectric comparison.
    Tombari E; Ferrari C; Salvetti G; Johari GP
    J Chem Phys; 2009 Mar; 130(12):124505. PubMed ID: 19334849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation polarization from faster motions in the ultraviscous and glassy diethyl phthalate and its entropy.
    Power G; Vij JK; Johari GP
    J Chem Phys; 2006 Jan; 124(4):044513. PubMed ID: 16460191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric relaxation and crystallization of nanophase separated 1-propanol-isoamylbromide mixture.
    Power G; Vij JK; Johari GP
    J Chem Phys; 2007 Sep; 127(9):094507. PubMed ID: 17824748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen network fluctuations of associating liquids: dielectric relaxation of ethylene glycol oligomers and their mixtures with water.
    Hanke E; von Roden K; Kaatze U
    J Chem Phys; 2006 Aug; 125(8):084507. PubMed ID: 16965029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxations and nano-phase-separation in ultraviscous heptanol-alkyl halide mixture.
    Power G; Vij JK; Johari GP
    J Chem Phys; 2007 Jan; 126(3):034512. PubMed ID: 17249889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses" [J. Chem. Phys. 134, 014508 (2011)].
    Kaminski K; Wlodarczyk P; Paluch M
    J Chem Phys; 2011 Oct; 135(16):167102. PubMed ID: 22047271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan.
    Adrjanowicz K; Paluch M; Ngai KL
    J Phys Condens Matter; 2010 Mar; 22(12):125902. PubMed ID: 21389498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleation rate of crystalline ice in amorphous solid water.
    Safarik DJ; Mullins CB
    J Chem Phys; 2004 Sep; 121(12):6003-10. PubMed ID: 15367028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound velocity dispersion in room temperature ionic liquids studied using the transient grating method.
    Fukuda M; Terazima M; Kimura Y
    J Chem Phys; 2008 Mar; 128(11):114508. PubMed ID: 18361592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.