BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15847586)

  • 1. Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes.
    Wood BR; Hammer L; Davis L; McNaughton D
    J Biomed Opt; 2005; 10(1):14005. PubMed ID: 15847586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.
    Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D
    Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers.
    Dasgupta R; Ahlawat S; Verma RS; Uppal A; Gupta PK
    J Biomed Opt; 2010; 15(5):055009. PubMed ID: 21054091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions.
    Webster GT; McNaughton D; Wood BR
    J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation.
    Lemler P; Premasiri WR; DelMonaco A; Ziegler LD
    Anal Bioanal Chem; 2014 Jan; 406(1):193-200. PubMed ID: 24162820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells.
    Ahlawat S; Kumar N; Uppal A; Kumar Gupta P
    J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte.
    Wood BR; Tait B; McNaughton D
    Biochim Biophys Acta; 2001 May; 1539(1-2):58-70. PubMed ID: 11389968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopy of optically trapped functional erythrocytes.
    Ramser K; Logg K; Goksör M; Enger J; Käll M; Hanstorp D
    J Biomed Opt; 2004; 9(3):593-600. PubMed ID: 15189098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Technique of confocal Raman microscopy on erythrocytes].
    Kang LL; Huang YX; Luo M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2343-7. PubMed ID: 19123403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cells polarize green laser light revealing hemoglobin's enhanced non-fundamental Raman modes.
    Marzec KM; Perez-Guaita D; de Veij M; McNaughton D; Baranska M; Dixon MW; Tilley L; Wood BR
    Chemphyschem; 2014 Dec; 15(18):3963-8. PubMed ID: 25257821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman spectra of cytochrome oxidase. Evidence for photoreduction by laser photons in resonance with the Soret band.
    Adar F; Yonetani T
    Biochim Biophys Acta; 1978 Apr; 502(1):80-6. PubMed ID: 205242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-Raman characterization of high- and low-spin heme moieties within single living erythrocytes.
    Wood BR; McNaughton D
    Biopolymers; 2002; 67(4-5):259-62. PubMed ID: 12012442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of the in vitro hemoglobin content of erythrocytes using the photo-thermal effect of the heme group.
    Kwak BS; Kim BS; Song SH; Kim HO; Cho HH; Jung HI
    Analyst; 2010 Sep; 135(9):2365-71. PubMed ID: 20648393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of substrate and photo-induced effects in Raman spectroscopy of single functional erythrocytes.
    Ramser K; Bjerneld EJ; Fant C; Käll M
    J Biomed Opt; 2003 Apr; 8(2):173-8. PubMed ID: 12683842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectra of heme a, cytochrome oxidase-ligand complexes, and alkaline denatured oxidase.
    Salmeen I; Rimai L; Babcock G
    Biochemistry; 1978 Mar; 17(5):800-6. PubMed ID: 24463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy.
    Torres Filho IP; Terner J; Pittman RN; Somera LG; Ward KR
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H488-95. PubMed ID: 15764679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman spectra of cytochromes c and b in Paracoccus denitrificans membranes: evidence for heme--heme interactions.
    Adar F; Dixit SN; Erecińska M
    Biochemistry; 1981 Dec; 20(26):7528-31. PubMed ID: 6275884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation.
    Torres Filho IP; Terner J; Pittman RN; Proffitt E; Ward KR
    J Appl Physiol (1985); 2008 Jun; 104(6):1809-17. PubMed ID: 18369097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal Raman microscopy on single living young and old erythrocytes.
    Kang LL; Huang YX; Liu WJ; Zheng XJ; Wu ZJ; Luo M
    Biopolymers; 2008 Nov; 89(11):951-9. PubMed ID: 18615496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.