BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15847639)

  • 1. The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy.
    Mouly V; Aamiri A; Bigot A; Cooper RN; Di Donna S; Furling D; Gidaro T; Jacquemin V; Mamchaoui K; Negroni E; Périé S; Renault V; Silva-Barbosa SD; Butler-Browne GS
    Acta Physiol Scand; 2005 May; 184(1):3-15. PubMed ID: 15847639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their immortalization.
    Di Donna S; Mamchaoui K; Cooper RN; Seigneurin-Venin S; Tremblay J; Butler-Browne GS; Mouly V
    Mol Cancer Res; 2003 Jul; 1(9):643-53. PubMed ID: 12861050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1.
    Thornell LE; Lindstöm M; Renault V; Klein A; Mouly V; Ansved T; Butler-Browne G; Furling D
    Neuropathol Appl Neurobiol; 2009 Dec; 35(6):603-13. PubMed ID: 19207265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
    Philippou A; Halapas A; Maridaki M; Koutsilieris M
    J Musculoskelet Neuronal Interact; 2007; 7(3):208-18. PubMed ID: 17947802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity.
    Kadi F; Ponsot E
    Scand J Med Sci Sports; 2010 Feb; 20(1):39-48. PubMed ID: 19765243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation.
    Périé S; Mamchaoui K; Mouly V; Blot S; Bouazza B; Thornell LE; St Guily JL; Butler-Browne G
    Neuromuscul Disord; 2006 Nov; 16(11):770-81. PubMed ID: 17005403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies.
    Zhu CH; Mouly V; Cooper RN; Mamchaoui K; Bigot A; Shay JW; Di Santo JP; Butler-Browne GS; Wright WE
    Aging Cell; 2007 Aug; 6(4):515-23. PubMed ID: 17559502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle stem cells in development, regeneration, and disease.
    Shi X; Garry DJ
    Genes Dev; 2006 Jul; 20(13):1692-708. PubMed ID: 16818602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased aging in primary muscle cultures of sporadic inclusion-body myositis.
    Morosetti R; Broccolini A; Sancricca C; Gliubizzi C; Gidaro T; Tonali PA; Ricci E; Mirabella M
    Neurobiol Aging; 2010 Jul; 31(7):1205-14. PubMed ID: 18823681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged absence of myostatin reduces sarcopenia.
    Siriett V; Platt L; Salerno MS; Ling N; Kambadur R; Sharma M
    J Cell Physiol; 2006 Dec; 209(3):866-73. PubMed ID: 16972257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IGF-1 induces human myotube hypertrophy by increasing cell recruitment.
    Jacquemin V; Furling D; Bigot A; Butler-Browne GS; Mouly V
    Exp Cell Res; 2004 Sep; 299(1):148-58. PubMed ID: 15302582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation.
    Machida S; Booth FW
    Proc Nutr Soc; 2004 May; 63(2):337-40. PubMed ID: 15294052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing.
    Scimè A; Desrosiers J; Trensz F; Palidwor GA; Caron AZ; Andrade-Navarro MA; Grenier G
    Mech Ageing Dev; 2010 Jan; 131(1):9-20. PubMed ID: 19913570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The possible place of autologus cell therapy in facioscapulohumeral muscular dystrophy].
    Desnuelle C; Sacconi S; Marolleau JP; Larghero J; Vilquin JT
    Bull Acad Natl Med; 2005 Apr; 189(4):697-713; discussion 713-4. PubMed ID: 16245686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anabolic potential and regulation of the skeletal muscle satellite cell populations.
    Scimè A; Rudnicki MA
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):214-9. PubMed ID: 16607119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite cells as players and targets in normal and diseased muscle.
    Bornemann A; Maier F; Kuschel R
    Neuropediatrics; 1999 Aug; 30(4):167-75. PubMed ID: 10569207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ageing affects the differentiation potential of human myoblasts.
    Lorenzon P; Bandi E; de Guarrini F; Pietrangelo T; Schäfer R; Zweyer M; Wernig A; Ruzzier F
    Exp Gerontol; 2004 Oct; 39(10):1545-54. PubMed ID: 15501025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite cell depletion in degenerative skeletal muscle.
    Jejurikar SS; Kuzon WM
    Apoptosis; 2003 Dec; 8(6):573-8. PubMed ID: 14574063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular regulation of muscle stem cell function.
    Rudnicki MA; Le Grand F; McKinnell I; Kuang S
    Cold Spring Harb Symp Quant Biol; 2008; 73():323-31. PubMed ID: 19329572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation.
    Pietrangelo T; Puglielli C; Mancinelli R; Beccafico S; Fanò G; Fulle S
    Exp Gerontol; 2009 Aug; 44(8):523-31. PubMed ID: 19457451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.