These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 1584775)

  • 41. A Solvent-Exposed Cysteine Forms a Peculiar Ni
    Alfano M; Veronesi G; Musiani F; Zambelli B; Signor L; Proux O; Rovezzi M; Ciurli S; Cavazza C
    Chemistry; 2019 Dec; 25(67):15351-15360. PubMed ID: 31486181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex.
    Singer SW; Hirst MB; Ludden PW
    Biochim Biophys Acta; 2006 Dec; 1757(12):1582-91. PubMed ID: 17123462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide.
    Ensign SA
    Biochemistry; 1995 Apr; 34(16):5372-8. PubMed ID: 7727395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CO-induced structural rearrangement of the C cluster in Carboxydothermus hydrogenoformans CO dehydrogenase-evidence from Ni K-edge X-ray absorption spectroscopy.
    Gu W; Seravalli J; Ragsdale SW; Cramer SP
    Biochemistry; 2004 Jul; 43(28):9029-35. PubMed ID: 15248760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon monoxide dehydrogenase from Rhodospirillum rubrum: effect of redox potential on catalysis.
    Feng J; Lindahl PA
    Biochemistry; 2004 Feb; 43(6):1552-9. PubMed ID: 14769031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of the alpha2epsilon2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex.
    Gong W; Hao B; Wei Z; Ferguson DJ; Tallant T; Krzycki JA; Chan MK
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9558-63. PubMed ID: 18621675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide.
    Ensign SA; Hyman MR; Ludden PW
    Biochemistry; 1989 Jun; 28(12):4973-9. PubMed ID: 2504285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Halbleib CM; Ludden PW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7690-3. PubMed ID: 11416171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ni and CO: more surprises.
    Hausinger RP
    Nat Struct Biol; 2003 Apr; 10(4):234-6. PubMed ID: 12660715
    [No Abstract]   [Full Text] [Related]  

  • 50. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster.
    Inoue T; Takao K; Yoshida T; Wada K; Daifuku T; Yoneda Y; Fukuyama K; Sako Y
    Biochem Biophys Res Commun; 2013 Nov; 441(1):13-7. PubMed ID: 24120497
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme.
    Fox JD; Kerby RL; Roberts GP; Ludden PW
    J Bacteriol; 1996 Mar; 178(6):1515-24. PubMed ID: 8626276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction.
    Inoue T; Takao K; Fukuyama Y; Yoshida T; Sako Y
    Biosci Biotechnol Biochem; 2014; 78(4):582-7. PubMed ID: 25036953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site.
    Alfano M; PĂ©rard J; Carpentier P; Basset C; Zambelli B; Timm J; Crouzy S; Ciurli S; Cavazza C
    J Biol Chem; 2019 May; 294(19):7601-7614. PubMed ID: 30858174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Morphing [4Fe-3S-nO]-Cluster within a Carbon Monoxide Dehydrogenase Scaffold.
    Jeoung JH; Fesseler J; Domnik L; Klemke F; Sinnreich M; Teutloff C; Dobbek H
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202117000. PubMed ID: 35133707
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: quaternary structure, stoichiometry of its SDS-induced dissociation, and characterization of the faster-migrating form.
    Xia J; Sinclair JF; Baldwin TO; Lindahl PA
    Biochemistry; 1996 Feb; 35(6):1965-71. PubMed ID: 8639680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First-Principles Calculations on Ni,Fe-Containing Carbon Monoxide Dehydrogenases Reveal Key Stereoelectronic Features for Binding and Release of CO
    Breglia R; Arrigoni F; Sensi M; Greco C; Fantucci P; De Gioia L; Bruschi M
    Inorg Chem; 2021 Jan; 60(1):387-402. PubMed ID: 33321036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic analogues of the active site of the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase: syntheses, structures, and reactions with CO.
    Harrop TC; Olmstead MM; Mascharak PK
    Inorg Chem; 2006 Apr; 45(8):3424-36. PubMed ID: 16602803
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum.
    Hyman MR; Ensign SA; Arp DJ; Ludden PW
    Biochemistry; 1989 Aug; 28(17):6821-6. PubMed ID: 2510818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of MFe3S4 clusters containing a planar M(II) site (M = Ni, Pd, Pt), a structural element in the C-cluster of carbon monoxide dehydrogenase.
    Panda R; Berlinguette CP; Zhang Y; Holm RH
    J Am Chem Soc; 2005 Aug; 127(31):11092-101. PubMed ID: 16076217
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum.
    Shin W; Stafford PR; Lindahl PA
    Biochemistry; 1992 Jul; 31(26):6003-11. PubMed ID: 1320927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.