BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15848134)

  • 1. Ionisations within a subtilisin-glyoxal inhibitor complex.
    Djurdjevic-Pahl A; Hewage C; Malthouse JP
    Biochim Biophys Acta; 2005 May; 1749(1):33-41. PubMed ID: 15848134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxyanion and tetrahedral intermediate stabilisation by subtilisin: detection of a new tetrahedral adduct.
    Howe N; Rogers L; Hewage C; Malthouse JP
    Biochim Biophys Acta; 2009 Aug; 1794(8):1251-8. PubMed ID: 19393346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13C-NMR study of the inhibition of delta-chymotrypsin by a tripeptide-glyoxal inhibitor.
    Djurdjevic-Pahl A; Hewage C; Malthouse JP
    Biochem J; 2002 Mar; 362(Pt 2):339-47. PubMed ID: 11853541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors.
    Spink E; Hewage C; Malthouse JP
    Biochemistry; 2007 Nov; 46(44):12868-74. PubMed ID: 17927215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C and 1H NMR studies of ionizations and hydrogen bonding in chymotrypsin-glyoxal inhibitor complexes.
    Spink E; Cosgrove S; Rogers L; Hewage C; Malthouse JP
    J Biol Chem; 2007 Mar; 282(11):7852-61. PubMed ID: 17213185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases.
    Cosgrove S; Rogers L; Hewage CM; Malthouse JP
    Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors.
    Malthouse JP
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):566-70. PubMed ID: 17511653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.
    Petrillo T; O'Donohoe CA; Howe N; Malthouse JP
    Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemiacetal stabilization in a chymotrypsin inhibitor complex and the reactivity of the hydroxyl group of the catalytic serine residue of chymotrypsin.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2014 Jun; 1844(6):1119-27. PubMed ID: 24657307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the ionization state of the active-site histidine in a subtilisin-(chloromethane inhibitor) derivative by 13C-NMR.
    O'Connell TP; Malthouse JP
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):35-40. PubMed ID: 8694783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 13C-NMR study of the inhibition of papain by a dipeptide-glyoxal inhibitor.
    Lowther J; Djurdjevic-Pahl A; Hewage C; Malthouse JP
    Biochem J; 2002 Sep; 366(Pt 3):983-7. PubMed ID: 12061892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of low-barrier hydrogen bonding and oxyanion binding in transition state analogue complexes of chymotrypsin.
    Neidhart D; Wei Y; Cassidy C; Lin J; Cleland WW; Frey PA
    Biochemistry; 2001 Feb; 40(8):2439-47. PubMed ID: 11327865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 13C-NMR study of the role of Asn-155 in stabilizing the oxyanion of a subtilisin tetrahedral adduct.
    O'connell TP; Day RM; Torchilin EV; Bachovchin WW; Malthouse JG
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):861-6. PubMed ID: 9307038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new lysine derived glyoxal inhibitor of trypsin, its properties and utilization for studying the stabilization of tetrahedral adducts by trypsin.
    Cleary JA; Malthouse JPG
    Biochem Biophys Rep; 2016 Mar; 5():272-284. PubMed ID: 28955834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH stability of the stromelysin-1 catalytic domain and its mechanism of interaction with a glyoxal inhibitor.
    Howe N; Ceruso M; Spink E; Malthouse JP
    Biochim Biophys Acta; 2011 Oct; 1814(10):1394-403. PubMed ID: 21782982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the stabilization of the oxyanion of tetrahedral adducts by trypsin, chymotrypsin and subtilisin.
    O'Connell TP; Malthouse JP
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):353-9. PubMed ID: 7733869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 13C NMR study of how the oxyanion pKa values of subtilisin and chymotrypsin tetrahedral adducts are affected by different amino acid residues binding in enzyme subsites S1-S4.
    O'Sullivan DB; O'Connell TP; Mahon MM; Koenig A; Milne JJ; Fitzpatrick TB; Malthouse JP
    Biochemistry; 1999 May; 38(19):6187-94. PubMed ID: 10320347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synthesis and characterisation of a glyoxal inhibitor of chymotrypsin.
    Murphy EA; O'Connell TP; Malthouse JP
    Biochem Soc Trans; 1996 Feb; 24(1):129S. PubMed ID: 8674615
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1382-91. PubMed ID: 26169698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases.
    Tsilikounas E; Rao T; Gutheil WG; Bachovchin WW
    Biochemistry; 1996 Feb; 35(7):2437-44. PubMed ID: 8652587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.