BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15848186)

  • 1. The hydrophobic surface of PaAMP from pokeweed seeds is essential to its interaction with fungal membrane lipids and the antifungal activity.
    Peng C; Dong C; Hou Q; Xu C; Zhao J
    FEBS Lett; 2005 Apr; 579(11):2445-50. PubMed ID: 15848186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First isolation of an antifungal lipid transfer peptide from seeds of a Brassica species.
    Lin P; Xia L; Ng TB
    Peptides; 2007 Aug; 28(8):1514-9. PubMed ID: 17692430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression and solution structure of defensin from lentil Lens culinaris.
    Shenkarev ZO; Gizatullina AK; Finkina EI; Alekseeva EA; Balandin SV; Mineev KS; Arseniev AS; Ovchinnikova TV
    Biochem Biophys Res Commun; 2014 Aug; 451(2):252-7. PubMed ID: 25086358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pr-1, a novel antifungal protein from pumpkin rinds.
    Park SC; Lee JR; Kim JY; Hwang I; Nah JW; Cheong H; Park Y; Hahm KS
    Biotechnol Lett; 2010 Jan; 32(1):125-30. PubMed ID: 19760117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of antifungal plant defensins with fungal membrane components.
    Thevissen K; Ferket KK; François IE; Cammue BP
    Peptides; 2003 Nov; 24(11):1705-12. PubMed ID: 15019201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of three antifungal proteins from cheeseweed (Malva parviflora).
    Wang X; Bunkers GJ; Walters MR; Thoma RS
    Biochem Biophys Res Commun; 2001 Apr; 282(5):1224-8. PubMed ID: 11302747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of the antifungal activity of wheat PR4 proteins.
    Bertini L; Caporale C; Testa M; Proietti S; Caruso C
    FEBS Lett; 2009 Sep; 583(17):2865-71. PubMed ID: 19647737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An antifungal peptide from red lentil seeds.
    Wang HX; Ng TB
    Peptides; 2007 Mar; 28(3):547-52. PubMed ID: 17123664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant wheat antifungal PR4 proteins expressed in Escherichia coli.
    Caruso C; Bertini L; Tucci M; Caporale C; Nobile M; Leonardi L; Buonocore V
    Protein Expr Purif; 2001 Dec; 23(3):380-8. PubMed ID: 11722174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants for plant annexin-membrane interactions.
    Dabitz N; Hu NJ; Yusof AM; Tranter N; Winter A; Daley M; Zschörnig O; Brisson A; Hofmann A
    Biochemistry; 2005 Dec; 44(49):16292-300. PubMed ID: 16331990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity.
    Yokoyama S; Iida Y; Kawasaki Y; Minami Y; Watanabe K; Yagi F
    J Pept Sci; 2009 Jul; 15(7):492-7. PubMed ID: 19466694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An antifungal protein from flageolet beans.
    Xia L; Ng TB
    Peptides; 2005 Dec; 26(12):2397-403. PubMed ID: 16026901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic cations mediate plant PR5 protein antifungal activity through fungal Mnn1- and Mnn4-regulated cell surface glycans.
    Salzman RA; Koiwa H; Ibeas JI; Pardo JM; Hasegawa PM; Bressan RA
    Mol Plant Microbe Interact; 2004 Jul; 17(7):780-8. PubMed ID: 15242172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-derived antifungal proteins and peptides.
    De Lucca AJ; Cleveland TE; Wedge DE
    Can J Microbiol; 2005 Dec; 51(12):1001-14. PubMed ID: 16462858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular structure of HEL protein from Arabidopsis reveals new potential functions for PR-4 proteins.
    Bertini L; Proietti S; Aleandri MP; Mondello F; Sandini S; Caporale C
    Biol Chem; 2012 Aug; 0(0):1-14. PubMed ID: 22868784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mu-calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation.
    Fernández-Montalván A; Assfalg-Machleidt I; Pfeiler D; Fritz H; Jochum M; Machleidt W
    Biol Chem; 2006 May; 387(5):617-27. PubMed ID: 16740134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed.
    Liu Y; Luo J; Xu C; Ren F; Peng C; Wu G; Zhao J
    Plant Physiol; 2000 Apr; 122(4):1015-24. PubMed ID: 10759497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of an antifungal peptide with antiproliferative activity from seeds of Phaseolus vulgaris cv. 'Spotted Bean'.
    Wang HX; Ng TB
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):125-30. PubMed ID: 17177050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of novel peptides from chilli pepper seeds: antimicrobial activities against pathogenic yeasts.
    Ribeiro SF; Carvalho AO; Da Cunha M; Rodrigues R; Cruz LP; Melo VM; Vasconcelos IM; Melo EJ; Gomes VM
    Toxicon; 2007 Oct; 50(5):600-11. PubMed ID: 17572465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passiflin, a novel dimeric antifungal protein from seeds of the passion fruit.
    Lam SK; Ng TB
    Phytomedicine; 2009 Mar; 16(2-3):172-80. PubMed ID: 19200704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.