These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 15848419)
1. An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Ham HT; Choi YS; Chung IJ J Colloid Interface Sci; 2005 Jun; 286(1):216-23. PubMed ID: 15848419 [TBL] [Abstract][Full Text] [Related]
8. The effect of bundling on the G' Raman band of single-walled carbon nanotubes. Cardenas JF; Gromov A Nanotechnology; 2009 Nov; 20(46):465703. PubMed ID: 19843989 [TBL] [Abstract][Full Text] [Related]
9. In situ fabrication of a water-soluble, self-doped polyaniline nanocomposite: the unique role of DNA functionalized single-walled carbon nanotubes. Ma Y; Ali SR; Wang L; Chiu PL; Mendelsohn R; He H J Am Chem Soc; 2006 Sep; 128(37):12064-5. PubMed ID: 16967945 [TBL] [Abstract][Full Text] [Related]
10. Swelling the micelle core surrounding single-walled carbon nanotubes with water-immiscible organic solvents. Wang RK; Chen WC; Campos DK; Ziegler KJ J Am Chem Soc; 2008 Dec; 130(48):16330-7. PubMed ID: 18998688 [TBL] [Abstract][Full Text] [Related]
11. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Ju SY; Kopcha WP; Papadimitrakopoulos F Science; 2009 Mar; 323(5919):1319-23. PubMed ID: 19265015 [TBL] [Abstract][Full Text] [Related]
12. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions. Blackburn JL; Engtrakul C; McDonald TJ; Dillon AC; Heben MJ J Phys Chem B; 2006 Dec; 110(50):25551-8. PubMed ID: 17166007 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic approach to boron nitride nanotube solubility and dispersion. Tiano AL; Gibbons L; Tsui M; Applin SI; Silva R; Park C; Fay CC Nanoscale; 2016 Feb; 8(7):4348-59. PubMed ID: 26839175 [TBL] [Abstract][Full Text] [Related]
15. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy. Attal S; Thiruvengadathan R; Regev O Anal Chem; 2006 Dec; 78(23):8098-104. PubMed ID: 17134145 [TBL] [Abstract][Full Text] [Related]
16. The evaluation of individual dispersion of single-walled carbon nanotubes using absorption and fluorescence spectroscopic techniques. Yoon D; Kang SJ; Choi JB; Kim YJ; Baik S J Nanosci Nanotechnol; 2007 Nov; 7(11):3727-30. PubMed ID: 18047046 [TBL] [Abstract][Full Text] [Related]
17. Separation of carbon nanotubes in aqueous medium by capillary electrophoresis. Suárez B; Simonet BM; Cárdenas S; Valcárcel M J Chromatogr A; 2006 Sep; 1128(1-2):282-9. PubMed ID: 16842803 [TBL] [Abstract][Full Text] [Related]
18. Polysiloxane surfactants for the dispersion of carbon nanotubes in nonpolar organic solvents. Ji Y; Huang YY; Tajbakhsh AR; Terentjev EM Langmuir; 2009 Oct; 25(20):12325-31. PubMed ID: 19821630 [TBL] [Abstract][Full Text] [Related]
19. Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. Xie H; Becraft EJ; Baughman RH; Dalton AB; Dieckmann GR J Pept Sci; 2008 Feb; 14(2):139-51. PubMed ID: 18098328 [TBL] [Abstract][Full Text] [Related]
20. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. Yurekli K; Mitchell CA; Krishnamoorti R J Am Chem Soc; 2004 Aug; 126(32):9902-3. PubMed ID: 15303847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]