BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 15849243)

  • 1. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.
    Eggeling C; Kask P; Winkler D; Jäger S
    Biophys J; 2005 Jul; 89(1):605-18. PubMed ID: 15849243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction.
    Eggeling C; Jäger S; Winkler D; Kask P
    Curr Pharm Biotechnol; 2005 Oct; 6(5):351-71. PubMed ID: 16248809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer.
    Hom EF; Verkman AS
    Biophys J; 2002 Jul; 83(1):533-46. PubMed ID: 12080140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Förster resonance energy transfer with fluctuation algorithms.
    Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA
    Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRET and FCS--friends or foes?
    Sahoo H; Schwille P
    Chemphyschem; 2011 Feb; 12(3):532-41. PubMed ID: 21308943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed interleaved excitation.
    Müller BK; Zaychikov E; Bräuchle C; Lamb DC
    Biophys J; 2005 Nov; 89(5):3508-22. PubMed ID: 16113120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis.
    Laurence TA; Kwon Y; Yin E; Hollars CW; Camarero JA; Barsky D
    Biophys J; 2007 Mar; 92(6):2184-98. PubMed ID: 17189306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring conformational dynamics: a new FCS-FRET approach.
    Torres T; Levitus M
    J Phys Chem B; 2007 Jun; 111(25):7392-400. PubMed ID: 17547447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds.
    Nettels D; Hoffmann A; Schuler B
    J Phys Chem B; 2008 May; 112(19):6137-46. PubMed ID: 18410159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer.
    Yuan J; Peng L; Bouma BE; Tearney GJ
    Opt Express; 2010 Aug; 18(18):18839-51. PubMed ID: 20940777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins.
    Kohl T; Heinze KG; Kuhlemann R; Koltermann A; Schwille P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12161-6. PubMed ID: 12209012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
    Lamb DC; Müller BK; Bräuchle C
    Curr Pharm Biotechnol; 2005 Oct; 6(5):405-14. PubMed ID: 16248814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence correlation spectroscopy: novel variations of an established technique.
    Haustein E; Schwille P
    Annu Rev Biophys Biomol Struct; 2007; 36():151-69. PubMed ID: 17477838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
    Lee NK; Kapanidis AN; Koh HR; Korlann Y; Ho SO; Kim Y; Gassman N; Kim SK; Weiss S
    Biophys J; 2007 Jan; 92(1):303-12. PubMed ID: 17040983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states.
    Kalinin S; Valeri A; Antonik M; Felekyan S; Seidel CA
    J Phys Chem B; 2010 Jun; 114(23):7983-95. PubMed ID: 20486698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.
    Melnikov SM; Yeow EK; Uji-i H; Cotlet M; Müllen K; De Schryver FC; Enderlein J; Hofkens J
    J Phys Chem B; 2007 Feb; 111(4):708-19. PubMed ID: 17249814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.