These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 15849265)
1. Capturing protein interactions in the secretory pathway of living cells. Nyfeler B; Michnick SW; Hauri HP Proc Natl Acad Sci U S A; 2005 May; 102(18):6350-5. PubMed ID: 15849265 [TBL] [Abstract][Full Text] [Related]
2. Cargo selectivity of the ERGIC-53/MCFD2 transport receptor complex. Nyfeler B; Zhang B; Ginsburg D; Kaufman RJ; Hauri HP Traffic; 2006 Nov; 7(11):1473-81. PubMed ID: 17010120 [TBL] [Abstract][Full Text] [Related]
3. Visualization of protein interactions inside the secretory pathway. Nyfeler B; Hauri HP Biochem Soc Trans; 2007 Nov; 35(Pt 5):970-3. PubMed ID: 17956257 [TBL] [Abstract][Full Text] [Related]
4. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Appenzeller C; Andersson H; Kappeler F; Hauri HP Nat Cell Biol; 1999 Oct; 1(6):330-4. PubMed ID: 10559958 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Mac-2BP secretion is mediated by its N-glycan binding to ERGIC-53. Chen Y; Hojo S; Matsumoto N; Yamamoto K Glycobiology; 2013 Jul; 23(7):904-16. PubMed ID: 23550150 [TBL] [Abstract][Full Text] [Related]
6. Live imaging of bidirectional traffic from the ERGIC. Ben-Tekaya H; Miura K; Pepperkok R; Hauri HP J Cell Sci; 2005 Jan; 118(Pt 2):357-67. PubMed ID: 15632110 [TBL] [Abstract][Full Text] [Related]
7. Receptor-mediated protein transport in the early secretory pathway. Baines AC; Zhang B Trends Biochem Sci; 2007 Aug; 32(8):381-8. PubMed ID: 17618120 [TBL] [Abstract][Full Text] [Related]
8. Oligomerization and interacellular localization of the glycoprotein receptor ERGIC-53 is independent of disulfide bonds. Neve EP; Lahtinen U; Pettersson RF J Mol Biol; 2005 Dec; 354(3):556-68. PubMed ID: 16257008 [TBL] [Abstract][Full Text] [Related]
9. Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. Wakana Y; Koyama S; Nakajima K; Hatsuzawa K; Nagahama M; Tani K; Hauri HP; Melançon P; Tagaya M Biochem Biophys Res Commun; 2005 Sep; 334(4):1198-205. PubMed ID: 16054885 [TBL] [Abstract][Full Text] [Related]
10. New insights into multiple coagulation factor deficiency from the solution structure of human MCFD2. Guy JE; Wigren E; Svärd M; Härd T; Lindqvist Y J Mol Biol; 2008 Sep; 381(4):941-55. PubMed ID: 18590741 [TBL] [Abstract][Full Text] [Related]
11. Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. Nyfeler B; Reiterer V; Wendeler MW; Stefan E; Zhang B; Michnick SW; Hauri HP J Cell Biol; 2008 Feb; 180(4):705-12. PubMed ID: 18283111 [TBL] [Abstract][Full Text] [Related]
12. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. Appenzeller-Herzog C; Hauri HP J Cell Sci; 2006 Jun; 119(Pt 11):2173-83. PubMed ID: 16723730 [TBL] [Abstract][Full Text] [Related]
13. Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Reiterer V; Nyfeler B; Hauri HP Traffic; 2010 Aug; 11(8):1044-55. PubMed ID: 20477988 [TBL] [Abstract][Full Text] [Related]
14. Two new mutations at ERGIC-53 gene in a Turkish family. Torun D; Yilmaz E; Atay A; Kürekçi E; Akar N Clin Appl Thromb Hemost; 2011 Jun; 17(3):248-50. PubMed ID: 20460353 [TBL] [Abstract][Full Text] [Related]
15. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. Zhang B; Kaufman RJ; Ginsburg D J Biol Chem; 2005 Jul; 280(27):25881-6. PubMed ID: 15886209 [TBL] [Abstract][Full Text] [Related]