These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 15849297)
1. Exercise over-stress and maximal muscle oxidative metabolism: a 31P magnetic resonance spectroscopy case report. Newcomer BR; Sirikul B; Hunter GR; Larson-Meyer E; Bamman M Br J Sports Med; 2005 May; 39(5):302-6. PubMed ID: 15849297 [TBL] [Abstract][Full Text] [Related]
2. 31P-MRS characterization of sprint and endurance trained athletes. Johansen L; Quistorff B Int J Sports Med; 2003 Apr; 24(3):183-9. PubMed ID: 12740736 [TBL] [Abstract][Full Text] [Related]
3. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743 [TBL] [Abstract][Full Text] [Related]
4. High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans. Larsen RG; Maynard L; Kent JA Acta Physiol (Oxf); 2014 May; 211(1):147-60. PubMed ID: 24612773 [TBL] [Abstract][Full Text] [Related]
5. High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)→ATP rate in resting human muscle. Larsen RG; Befroy DE; Kent-Braun JA Am J Physiol Regul Integr Comp Physiol; 2013 Mar; 304(5):R333-42. PubMed ID: 23255590 [TBL] [Abstract][Full Text] [Related]
6. Phosphocreatine resynthesis during recovery in different muscles of the exercising leg by 31P-MRS. Yoshida T; Abe D; Fukuoka Y Scand J Med Sci Sports; 2013 Oct; 23(5):e313-9. PubMed ID: 23662804 [TBL] [Abstract][Full Text] [Related]
7. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study. Rana P; Varshney A; Devi MM; Kumar P; Khushu S Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo. Kemp GJ; Roberts N; Bimson WE; Bakran A; Harris PL; Gilling-Smith GL; Brennan J; Rankin A; Frostick SP J Vasc Surg; 2001 Dec; 34(6):1103-10. PubMed ID: 11743568 [TBL] [Abstract][Full Text] [Related]
9. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T. Valkovič L; Chmelík M; Just Kukurová I; Jakubová M; Kipfelsberger MC; Krumpolec P; Tušek Jelenc M; Bogner W; Meyerspeer M; Ukropec J; Frollo I; Ukropcová B; Trattnig S; Krššák M NMR Biomed; 2014 Nov; 27(11):1346-52. PubMed ID: 25199902 [TBL] [Abstract][Full Text] [Related]
10. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Forbes SC; Slade JM; Meyer RA Appl Physiol Nutr Metab; 2008 Dec; 33(6):1124-31. PubMed ID: 19088770 [TBL] [Abstract][Full Text] [Related]
11. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans. Layec G; Bringard A; Le Fur Y; Vilmen C; Micallef JP; Perrey S; Cozzone PJ; Bendahan D Exp Physiol; 2009 Jun; 94(6):704-19. PubMed ID: 19151077 [TBL] [Abstract][Full Text] [Related]
12. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Burgomaster KA; Hughes SC; Heigenhauser GJ; Bradwell SN; Gibala MJ J Appl Physiol (1985); 2005 Jun; 98(6):1985-90. PubMed ID: 15705728 [TBL] [Abstract][Full Text] [Related]
13. Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects. Conley KE; Jubrias SA; Cress ME; Esselman PC Exp Physiol; 2013 Apr; 98(4):899-907. PubMed ID: 23204291 [TBL] [Abstract][Full Text] [Related]
14. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. Jacobs RA; Rasmussen P; Siebenmann C; Díaz V; Gassmann M; Pesta D; Gnaiger E; Nordsborg NB; Robach P; Lundby C J Appl Physiol (1985); 2011 Nov; 111(5):1422-30. PubMed ID: 21885805 [TBL] [Abstract][Full Text] [Related]
15. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects. Layec G; Bringard A; Le Fur Y; Vilmen C; Micallef JP; Perrey S; Cozzone PJ; Bendahan D NMR Biomed; 2011 May; 24(4):425-38. PubMed ID: 20963767 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of skeletal muscle oxidative capacity in children and adults: a 31P-MRS study. Ratel S; Tonson A; Le Fur Y; Cozzone P; Bendahan D Appl Physiol Nutr Metab; 2008 Aug; 33(4):720-7. PubMed ID: 18641715 [TBL] [Abstract][Full Text] [Related]
17. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. Rivera-Brown AM; Frontera WR PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541 [TBL] [Abstract][Full Text] [Related]
18. Effect of sprint training: training once daily versus twice every second day. Ijichi T; Hasegawa Y; Morishima T; Kurihara T; Hamaoka T; Goto K Eur J Sport Sci; 2015; 15(2):143-50. PubMed ID: 24993562 [TBL] [Abstract][Full Text] [Related]
19. Contribution of intramuscular oxidative metabolism to total ATP production during forearm isometric exercise at varying intensities. Kimura N; Hamaoka T; Kurosawa Y; Katsumura T Tohoku J Exp Med; 2006 Apr; 208(4):307-20. PubMed ID: 16565593 [TBL] [Abstract][Full Text] [Related]