BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15849303)

  • 1. Localization of soluble beta-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae.
    Tanaka Y; Nakatsuma D; Harada H; Ishida M; Matsuda Y
    Plant Physiol; 2005 May; 138(1):207-17. PubMed ID: 15849303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix.
    Kitao Y; Matsuda Y
    Biochem J; 2009 May; 419(3):681-8. PubMed ID: 19200059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Tanaka R; Yamazaki Y; Hara S; Hisabori T; Kroth PG; Matsuda Y
    J Biol Chem; 2012 Jun; 287(24):20689-700. PubMed ID: 22535967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the expression of intracellular beta-carbonic anhydrase in response to CO2 and light in the marine diatom Phaeodactylum tricornutum.
    Harada H; Nakatsuma D; Ishida M; Matsuda Y
    Plant Physiol; 2005 Oct; 139(2):1041-50. PubMed ID: 16169965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum.
    Satoh D; Hiraoka Y; Colman B; Matsuda Y
    Plant Physiol; 2001 Aug; 126(4):1459-70. PubMed ID: 11500545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana.
    Samukawa M; Shen C; Hopkinson BM; Matsuda Y
    Photosynth Res; 2014 Sep; 121(2-3):235-49. PubMed ID: 24414291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum.
    Ewe D; Tachibana M; Kikutani S; Gruber A; Río Bártulos C; Konert G; Kaplan A; Matsuda Y; Kroth PG
    Photosynth Res; 2018 Aug; 137(2):263-280. PubMed ID: 29572588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO(2)-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum.
    Ohno N; Inoue T; Yamashiki R; Nakajima K; Kitahara Y; Ishibashi M; Matsuda Y
    Plant Physiol; 2012 Jan; 158(1):499-513. PubMed ID: 22095044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana.
    Nawaly H; Tanaka A; Toyoshima Y; Tsuji Y; Matsuda Y
    Photosynth Res; 2023 May; 156(2):217-229. PubMed ID: 36862281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2 sensing at ocean surface mediated by cAMP in a marine diatom.
    Harada H; Nakajima K; Sakaue K; Matsuda Y
    Plant Physiol; 2006 Nov; 142(3):1318-28. PubMed ID: 17012409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing of Elevating CO(2) in a Marine Diatom: Molecular Mechanisms and Implications.
    Matsuda Y; Harada H; Nakajima K; Colman B
    Plant Signal Behav; 2007 Mar; 2(2):109-11. PubMed ID: 19704751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of gene expression system in a marine diatom using viral promoters of a wide variety of origin.
    Sakaue K; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):59-67. PubMed ID: 18346072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new widespread subclass of carbonic anhydrase in marine phytoplankton.
    Jensen EL; Clement R; Kosta A; Maberly SC; Gontero B
    ISME J; 2019 Aug; 13(8):2094-2106. PubMed ID: 31024153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors.
    Rogato A; Del Prete S; Nocentini A; Carginale V; Supuran CT; Capasso C
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):510-518. PubMed ID: 30688123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms.
    Shao Z; Thomas Y; Hembach L; Xing X; Duan D; Moerschbacher BM; Bulone V; Tirichine L; Bowler C
    New Phytol; 2019 Mar; 221(4):1890-1905. PubMed ID: 30288745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.