These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15849901)

  • 21. Cross-modal interactions in time and space: auditory influence on visual attention in hemispatial neglect.
    Van Vleet TM; Robertson LC
    J Cogn Neurosci; 2006 Aug; 18(8):1368-79. PubMed ID: 16859421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lapses in a prefrontal-extrastriate preparatory attention network predict mistakes.
    Padilla ML; Wood RA; Hale LA; Knight RT
    J Cogn Neurosci; 2006 Sep; 18(9):1477-87. PubMed ID: 16989549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of prefrontal cortex for selective attention in a visual working memory task.
    Schreppel TJ; Pauli P; Ellgring H; Fallgatter AJ; Herrmann MJ
    Int J Neurosci; 2008 Dec; 118(12):1673-88. PubMed ID: 18937114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Event-related potential correlates of the interaction between attention and spatiotemporal context regularity in vision.
    Pollux PM; Hall S; Roebuck H; Guo K
    Neuroscience; 2011 Sep; 190():258-69. PubMed ID: 21664952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced anterior prefrontal cortex activation in young binge drinkers during a visual working memory task.
    Crego A; Rodriguez-Holguín S; Parada M; Mota N; Corral M; Cadaveira F
    Drug Alcohol Depend; 2010 Jun; 109(1-3):45-56. PubMed ID: 20079980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The neural mechanisms of top-down attentional control.
    Hopfinger JB; Buonocore MH; Mangun GR
    Nat Neurosci; 2000 Mar; 3(3):284-91. PubMed ID: 10700262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prefrontal cortex and basal ganglia contributions to visual working memory.
    Voytek B; Knight RT
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18167-72. PubMed ID: 20921401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Top down attentional deficits in macaques with lesions of lateral prefrontal cortex.
    Rossi AF; Bichot NP; Desimone R; Ungerleider LG
    J Neurosci; 2007 Oct; 27(42):11306-14. PubMed ID: 17942725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distilling the distinct contralateral and ipsilateral attentional responses to lateral stimuli and the bilateral response to midline stimuli for upper and lower visual hemifield locations.
    Monnier A; Dell'Acqua R; Jolicoeur P
    Psychophysiology; 2020 Nov; 57(11):e13651. PubMed ID: 32797636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined deficits of saccades and visuo-spatial orientation after cortical lesions.
    Heide W; Kömpf D
    Exp Brain Res; 1998 Nov; 123(1-2):164-71. PubMed ID: 9835406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attention and spatial selection: electrophysiological evidence for modulation by perceptual load.
    Handy TC; Mangun GR
    Percept Psychophys; 2000 Jan; 62(1):175-86. PubMed ID: 10703265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visuospatial Asymmetries Arise from Differences in the Onset Time of Perceptual Evidence Accumulation.
    Newman DP; Loughnane GM; Kelly SP; O'Connell RG; Bellgrove MA
    J Neurosci; 2017 Mar; 37(12):3378-3385. PubMed ID: 28242798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separable mechanisms underlying global feature-based attention.
    Bondarenko R; Boehler CN; Stoppel CM; Heinze HJ; Schoenfeld MA; Hopf JM
    J Neurosci; 2012 Oct; 32(44):15284-95. PubMed ID: 23115167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novelty detection is enhanced when attention is otherwise engaged: an event-related potential study.
    Schomaker J; Meeter M
    Exp Brain Res; 2014 Mar; 232(3):995-1011. PubMed ID: 24402203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emotionally negative stimuli can overcome attentional deficits in patients with visuo-spatial hemineglect.
    Grabowska A; Marchewka A; Seniów J; Polanowska K; Jednoróg K; Królicki L; Kossut M; Członkowska A
    Neuropsychologia; 2011 Oct; 49(12):3327-37. PubMed ID: 21864550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study.
    Perry RJ; Zeki S
    Brain; 2000 Nov; 123 ( Pt 11)():2273-88. PubMed ID: 11050027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of rostral prefrontal cortex in prospective memory: a voxel-based lesion study.
    Volle E; Gonen-Yaacovi G; Costello Ade L; Gilbert SJ; Burgess PW
    Neuropsychologia; 2011 Jul; 49(8):2185-98. PubMed ID: 21371485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal activity representing visuospatial mnemonic processes associated with target selection in the monkey dorsolateral prefrontal cortex.
    Iba M; Sawaguchi T
    Neurosci Res; 2002 May; 43(1):9-22. PubMed ID: 12074837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.