BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 15850073)

  • 1. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE; Steinkraus HB; Nelson SR; Lewis RV
    Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of forced silking.
    Ortlepp CS; Gosline JM
    Biomacromolecules; 2004; 5(3):727-31. PubMed ID: 15132653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the rheology of native spider and silkworm spinning dope.
    Holland C; Terry AE; Porter D; Vollrath F
    Nat Mater; 2006 Nov; 5(11):870-4. PubMed ID: 17057700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the elastic nature of spider silk in pursuit of the next designer fiber.
    Brooks AE; Lewis RV
    Biomed Sci Instrum; 2004; 40():232-7. PubMed ID: 15133963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2.
    Brooks AE; Stricker SM; Joshi SB; Kamerzell TJ; Middaugh CR; Lewis RV
    Biomacromolecules; 2008 Jun; 9(6):1506-10. PubMed ID: 18457450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of mechanical properties with amino acid content in the silk of Nephila clavipes.
    Zax DB; Armanios DE; Horak S; Brodowski C; Yang Z
    Biomacromolecules; 2004; 5(3):732-8. PubMed ID: 15132654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent removal during synthetic and Nephila fiber spinning.
    Kojic N; Kojic M; Gudlavalleti S; McKinley G
    Biomacromolecules; 2004; 5(5):1698-707. PubMed ID: 15360277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spider silk: from soluble protein to extraordinary fiber.
    Heim M; Keerl D; Scheibel T
    Angew Chem Int Ed Engl; 2009; 48(20):3584-96. PubMed ID: 19212993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
    An B; Hinman MB; Holland GP; Yarger JL; Lewis RV
    Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline and processing of spider silks.
    Liu Y; Sponner A; Porter D; Vollrath F
    Biomacromolecules; 2008 Jan; 9(1):116-21. PubMed ID: 18052126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prey type, vibrations and handling interactively influence spider silk expression.
    Blamires SJ; Chao IC; Tso IM
    J Exp Biol; 2010 Nov; 213(Pt 22):3906-10. PubMed ID: 21037070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.