BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15850081)

  • 21. Vertical shift in cerebral autoregulation curve: a graded head-up tilt study.
    Bondar RL; Dunphy PT; Moradshahi P; Dai H; Kassam MS; Stein F; Schneider S; Rubin M
    Can Aeronaut Space J; 1999 Mar; 45(1):3-8. PubMed ID: 11541909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome.
    Ocon AJ; Medow MS; Taneja I; Clarke D; Stewart JM
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H664-73. PubMed ID: 19502561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
    Ainslie PN; Celi L; McGrattan K; Peebles K; Ogoh S
    Brain Res; 2008 Sep; 1230():115-24. PubMed ID: 18680730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.
    Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ
    Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements.
    Panerai RB; Sammons EL; Smith SM; Rathbone WE; Bentley S; Potter JF; Samani NJ
    Physiol Meas; 2008 Apr; 29(4):497-513. PubMed ID: 18401070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats.
    Tonnesen J; Pryds A; Larsen EH; Paulson OB; Hauerberg J; Knudsen GM
    Exp Physiol; 2005 May; 90(3):349-55. PubMed ID: 15653714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Cerebral Autoregulation During the Combination of Mild Hypercapnia and Cephalad Fluid Shift.
    Kurazumi T; Ogawa Y; Yanagida R; Morisaki H; Iwasaki KI
    Aerosp Med Hum Perform; 2017 Sep; 88(9):819-826. PubMed ID: 28818140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetry in cerebral blood flow velocity with processing of facial images during head-down rest.
    Njemanze PC
    Aviat Space Environ Med; 2004 Sep; 75(9):800-5. PubMed ID: 15460633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady-state tilt has no effect on cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations.
    Tymko MM; Skow RJ; MacKay CM; Day TA
    Exp Physiol; 2015 Jul; 100(7):839-51. PubMed ID: 25966669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients.
    Blaber AP; Bondar RL; Stein F; Dunphy PT; Moradshahi P; Kassam MS; Freeman R
    Stroke; 1997 Sep; 28(9):1686-92. PubMed ID: 9303010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans.
    Mitsis GD; Poulin MJ; Robbins PA; Marmarelis VZ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1932-43. PubMed ID: 15536895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral analysis of slow modulation of EEG amplitude and cardiovascular variables in subjects with postural tachycardia syndrome.
    Lagerlund TD; Low PA; Novak V; Novak P; Hines SM; McPhee B; Busacker NE
    Auton Neurosci; 2005 Feb; 117(2):132-42. PubMed ID: 15664567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valsalva maneuver suggests increased rigidity of cerebral resistance vessels in familial dysautonomia.
    Hilz MJ; Axelrod FB; Steingrueber M; Stemper B
    Clin Auton Res; 2002 Oct; 12(5):385-92. PubMed ID: 12420084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation--a comparison between spontaneous and respiratory-induced oscillations.
    Reinhard M; Müller T; Guschlbauer B; Timmer J; Hetzel A
    Physiol Meas; 2003 Feb; 24(1):27-43. PubMed ID: 12636185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human autonomic and cerebrovascular responses to inspiratory impedance.
    Cooke WH; Lurie KG; Rohrer MJ; Convertino VA
    J Trauma; 2006 Jun; 60(6):1275-83. PubMed ID: 16766971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic cerebral autoregulation is preserved in neurally mediated syncope.
    Schondorf R; Stein R; Roberts R; Benoit J; Cupples W
    J Appl Physiol (1985); 2001 Dec; 91(6):2493-502. PubMed ID: 11717210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multivariate system identification for cerebral autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    Ann Biomed Eng; 2008 Feb; 36(2):308-20. PubMed ID: 18066666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing blood flow control through a bootstrap method.
    Simpson DM; Panerai RB; Ramos EG; Lopes JM; Marinatto MN; Nadal J; Evans DH
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1284-6. PubMed ID: 15248547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerebral autoregulation and ageing.
    Yam AT; Lang EW; Lagopoulos J; Yip K; Griffith J; Mudaliar Y; Dorsch NW
    J Clin Neurosci; 2005 Aug; 12(6):643-6. PubMed ID: 16098757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural network modelling of dynamic cerebral autoregulation: assessment and comparison with established methods.
    Panerai RB; Chacon M; Pereira R; Evans DH
    Med Eng Phys; 2004 Jan; 26(1):43-52. PubMed ID: 14644597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.