These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15850100)

  • 1. A bioinstrumentation system for the identification of EEG correlates of tinnitus.
    Choudhury MH; Barreto A; Alonso M
    Biomed Sci Instrum; 2005; 41():169-74. PubMed ID: 15850100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording of electrically evoked auditory brainstem responses (E-ABR) with an integrated stimulus generator in Matlab.
    Bahmer A; Peter O; Baumann U
    J Neurosci Methods; 2008 Aug; 173(2):306-14. PubMed ID: 18621081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Final common pathway for tinnitus: theoretical and clinical implications of neuroanatomical substrates.
    Shulman A; Goldstein B; Strashun AM
    Int Tinnitus J; 2009; 15(1):5-50. PubMed ID: 19842346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving auditory steady-state response detection using independent component analysis on multichannel EEG data.
    Van Dun B; Wouters J; Moonen M
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1220-30. PubMed ID: 17605353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. User customization of the feature generator of an asynchronous brain interface.
    Bashashati A; Fatourechi M; Ward RK; Birch GE
    Ann Biomed Eng; 2006 Jun; 34(6):1051-60. PubMed ID: 16783660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flexible research platform for multi-channel auditory steady-state response measurements.
    Van Dun B; Verstraeten S; Alaerts J; Luts H; Moonen M; Wouters J
    J Neurosci Methods; 2008 Mar; 169(1):239-48. PubMed ID: 18215424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory middle latency responses in individuals with debilitating tinnitus.
    Theodoroff S; Chambers R; McMillan R
    Int Tinnitus J; 2011; 16(2):104-10. PubMed ID: 22249868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recording and online analysis of auditory steady state responses (ASSR) in Matlab.
    Bahmer A; Baumann U
    J Neurosci Methods; 2010 Mar; 187(1):105-13. PubMed ID: 20036283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A system for recording of auditory evoked responses.
    Larsby B; Hällgren M; Arlinger S
    Technol Health Care; 2000; 8(6):315-26. PubMed ID: 11258578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition and analysis of high rate deconvolved auditory evoked potentials during sleep.
    Millan J; Ozdamar O; Bohórquez J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4987-90. PubMed ID: 17946667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording human evoked potentials that follow the pitch contour of a natural vowel.
    Dajani HR; Purcell D; Wong W; Kunov H; Picton TW
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1614-8. PubMed ID: 16189976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocybernetics of attention in the tinnitus decompensation: An integrative multiscale modeling approach.
    Trenado C; Haab L; Reith W; Strauss DJ
    J Neurosci Methods; 2009 Mar; 178(1):237-47. PubMed ID: 19135086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible and inexpensive high-performance auditory evoked response recording system appropriate for research purposes.
    Valderrama JT; de la Torre A; Alvarez I; Segura JC; Sainz M; Vargas JL
    Biomed Tech (Berl); 2014 Oct; 59(5):447-59. PubMed ID: 24870606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New instrumentation for automated tinnitus psychoacoustic assessment.
    Henry JA; Rheinsburg B; Owens KK; Ellingson RM
    Acta Otolaryngol Suppl; 2006 Dec; (556):34-8. PubMed ID: 17114140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study.
    Ashton H; Reid K; Marsh R; Johnson I; Alter K; Griffiths T
    Neurosci Lett; 2007 Oct; 426(1):23-8. PubMed ID: 17888572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective quantification of the tinnitus decompensation by synchronization measures of auditory evoked single sweeps.
    Strauss DJ; Delb W; D'Amelio R; Low YF; Falkai P
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):74-81. PubMed ID: 18303808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory evoked potentials in the detection of interaural intensity differences in children and adults.
    Wambacq IJ; Koehnke J; Shea-Miller KJ; Besing J; Toth V; Abubakr A
    Ear Hear; 2007 Jun; 28(3):320-31. PubMed ID: 17485981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative electroencephalography for tinnitus--a means for data collection, analysis, and translation.
    Viirre ES
    Int Tinnitus J; 2009; 15(2):149-53. PubMed ID: 20420339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive survey of brain interface technology designs.
    Mason SG; Bashashati A; Fatourechi M; Navarro KF; Birch GE
    Ann Biomed Eng; 2007 Feb; 35(2):137-69. PubMed ID: 17115262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an objective test of chronic tinnitus: Properties of auditory cortical potentials evoked by silent gaps in tinnitus-like sounds.
    Paul BT; Schoenwiesner M; Hébert S
    Hear Res; 2018 Sep; 366():90-98. PubMed ID: 29692331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.