BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15850383)

  • 61. The production of nitrous oxide by the heme/nonheme diiron center of engineered myoglobins (Fe(B)Mbs) proceeds through a trans-iron-nitrosyl dimer.
    Matsumura H; Hayashi T; Chakraborty S; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2014 Feb; 136(6):2420-31. PubMed ID: 24432820
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.
    Van Stappen C; Lehnert N
    Inorg Chem; 2018 Apr; 57(8):4252-4269. PubMed ID: 29608298
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structures of the iron-sulfur flavoproteins from Methanosarcina thermophila and Archaeoglobus fulgidus.
    Andrade SL; Cruz F; Drennan CL; Ramakrishnan V; Rees DC; Ferry JG; Einsle O
    J Bacteriol; 2005 Jun; 187(11):3848-54. PubMed ID: 15901710
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A functional nitric oxide reductase model.
    Collman JP; Yang Y; Dey A; Decréau RA; Ghosh S; Ohta T; Solomon EI
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15660-5. PubMed ID: 18838684
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to Exon 8.
    Fu A; Park S; Rodermel S
    J Biol Chem; 2005 Dec; 280(52):42489-96. PubMed ID: 16249174
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin.
    Okamoto Y; Onoda A; Sugimoto H; Takano Y; Hirota S; Kurtz DM; Shiro Y; Hayashi T
    Inorg Chem; 2013 Nov; 52(22):13014-20. PubMed ID: 24187962
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum.
    Park SY; Shimizu H; Adachi S; Nakagawa A; Tanaka I; Nakahara K; Shoun H; Obayashi E; Nakamura H; Iizuka T; Shiro Y
    Nat Struct Biol; 1997 Oct; 4(10):827-32. PubMed ID: 9334748
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti.
    Ye J; Yang HC; Rosen BP; Bhattacharjee H
    FEBS Lett; 2007 Aug; 581(21):3996-4000. PubMed ID: 17673204
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure-function studies of the non-heme iron active site of isopenicillin N synthase: some implications for catalysis.
    Kreisberg-Zakarin R; Borovok I; Yanko M; Frolow F; Aharonowitz Y; Cohen G
    Biophys Chem; 2000 Aug; 86(2-3):109-18. PubMed ID: 11026676
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distortion of the [FeNO]
    White CJ; Lengel MO; Bracken AJ; Kampf JW; Speelman AL; Alp EE; Hu MY; Zhao J; Lehnert N
    J Am Chem Soc; 2022 Mar; 144(9):3804-3820. PubMed ID: 35212523
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Intrapeptide sequence homology in rubrerythrin from Desulfovibrio vulgaris: identification of potential ligands to the diiron site.
    Kurtz DM; Prickril BC
    Biochem Biophys Res Commun; 1991 Nov; 181(1):337-41. PubMed ID: 1958203
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes.
    Silva G; LeGall J; Xavier AV; Teixeira M; Rodrigues-Pousada C
    J Bacteriol; 2001 Aug; 183(15):4413-20. PubMed ID: 11443075
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiple pathways guide oxygen diffusion into flavoenzyme active sites.
    Baron R; Riley C; Chenprakhon P; Thotsaporn K; Winter RT; Alfieri A; Forneris F; van Berkel WJ; Chaiyen P; Fraaije MW; Mattevi A; McCammon JA
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10603-8. PubMed ID: 19541622
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Binding mode analysis of the NADH cofactor in nitric oxide reductase: a theoretical study.
    Menyhárd DK; Keseru GM
    J Mol Graph Model; 2006 Nov; 25(3):363-72. PubMed ID: 16542862
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diversity and complexity of flavodiiron NO/O2 reductases.
    Folgosa F; Martins MC; Teixeira M
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29240952
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis.
    Di Matteo A; Scandurra FM; Testa F; Forte E; Sarti P; Brunori M; Giuffrè A
    J Biol Chem; 2008 Feb; 283(7):4061-8. PubMed ID: 18077462
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Insights into the structure of the diiron site of RIC from Escherichia coli.
    Nobre LS; Lousa D; Pacheco I; Soares CM; Teixeira M; Saraiva LM
    FEBS Lett; 2015 Feb; 589(4):426-31. PubMed ID: 25583388
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases.
    White CJ; Speelman AL; Kupper C; Demeshko S; Meyer F; Shanahan JP; Alp EE; Hu M; Zhao J; Lehnert N
    J Am Chem Soc; 2018 Feb; 140(7):2562-2574. PubMed ID: 29350921
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural studies on flavodiiron proteins.
    Vicente JB; Carrondo MA; Teixeira M; Frazão C
    Methods Enzymol; 2008; 437():3-19. PubMed ID: 18433620
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure of the Membrane-intrinsic Nitric Oxide Reductase from Roseobacter denitrificans.
    Crow A; Matsuda Y; Arata H; Oubrie A
    Biochemistry; 2016 Jun; 55(23):3198-203. PubMed ID: 27185533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.