These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 15850397)
1. Inhibition and pH dependence of phosphite dehydrogenase. Relyea HA; Vrtis JM; Woodyer R; Rimkus SA; van der Donk WA Biochemistry; 2005 May; 44(17):6640-9. PubMed ID: 15850397 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. Woodyer R; Zhao H; van der Donk WA FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753 [TBL] [Abstract][Full Text] [Related]
4. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Slatner M; Nidetzky B; Kulbe KD Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145 [TBL] [Abstract][Full Text] [Related]
5. Mechanism and applications of phosphite dehydrogenase. Relyea HA; van der Donk WA Bioorg Chem; 2005 Jun; 33(3):171-89. PubMed ID: 15888310 [TBL] [Abstract][Full Text] [Related]
6. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
7. Chemical rescue and inhibition studies to determine the role of Arg301 in phosphite dehydrogenase. Hung JE; Fogle EJ; Garg N; Chekan JR; Nair SK; van der Donk WA PLoS One; 2014; 9(1):e87134. PubMed ID: 24498026 [TBL] [Abstract][Full Text] [Related]
8. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase. Argyrou A; Blanchard JS Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882 [TBL] [Abstract][Full Text] [Related]
10. Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase. Lee SS; Yu S; Withers SG Biochemistry; 2003 Nov; 42(44):13081-90. PubMed ID: 14596624 [TBL] [Abstract][Full Text] [Related]
11. On the catalytic role of the conserved active site residue His466 of choline oxidase. Ghanem M; Gadda G Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745 [TBL] [Abstract][Full Text] [Related]
12. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Markham GD; Bock CL; Schalk-Hihi C Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364 [TBL] [Abstract][Full Text] [Related]
13. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
14. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi. Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Wang H; Liu L; Hanna PE; Wagner CR Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314 [TBL] [Abstract][Full Text] [Related]
17. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
18. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase. Zheng R; Blanchard JS Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879 [TBL] [Abstract][Full Text] [Related]
19. Cloning, expression, and characterization of a wide-pH-range stable phosphite dehydrogenase from Pseudomonas sp. K in Escherichia coli. Liu DF; Ding HT; Du YQ; Zhao YH; Jia XM Appl Biochem Biotechnol; 2012 Mar; 166(5):1301-13. PubMed ID: 22238013 [TBL] [Abstract][Full Text] [Related]
20. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions. Badarau A; Page MI Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]