BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 15850554)

  • 1. Role of the C-terminal tyrosine of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase in the electron transfer processes with its protein partners ferredoxin and flavodoxin.
    Nogués I; Tejero J; Hurley JK; Paladini D; Frago S; Tollin G; Mayhew SG; Gómez-Moreno C; Ceccarelli EA; Carrillo N; Medina M
    Biochemistry; 2004 May; 43(20):6127-37. PubMed ID: 15147197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swapping FAD binding motifs between plastidic and bacterial ferredoxin-NADP(H) reductases.
    Musumeci MA; Botti H; Buschiazzo A; Ceccarelli EA
    Biochemistry; 2011 Mar; 50(12):2111-22. PubMed ID: 21306142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal tyrosine of ferredoxin-NADP+ reductase in hydride transfer processes with NAD(P)+/H.
    Tejero J; Pérez-Dorado I; Maya C; Martínez-Júlvez M; Sanz-Aparicio J; Gómez-Moreno C; Hermoso JA; Medina M
    Biochemistry; 2005 Oct; 44(41):13477-90. PubMed ID: 16216071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide.
    Dupuy DL; Rial DV; Ceccarelli EA
    Eur J Biochem; 2004 Nov; 271(22):4582-93. PubMed ID: 15560800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase.
    Calcaterra NB; Picó GA; Orellano EG; Ottado J; Carrillo N; Ceccarelli EA
    Biochemistry; 1995 Oct; 34(39):12842-8. PubMed ID: 7548039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans.
    Nascimento AS; Ferrarezi T; Catalano-Dupuy DL; Ceccarelli EA; Polikarpov I
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jul; 62(Pt 7):662-4. PubMed ID: 16820688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of quinones in the ascorbate reduction rates of S-nitrosoglutathione.
    Sanchez-Cruz P; Garcia C; Alegria AE
    Free Radic Biol Med; 2010 Nov; 49(9):1387-94. PubMed ID: 20691779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective bioelectronic sensing of pharmacologically relevant quinones using extracellular electron transfer in Lactiplantibacillus plantarum.
    Li S; De Groote Tavares C; Tolar JG; Ajo-Franklin CM
    Biosens Bioelectron; 2024 Jan; 243():115762. PubMed ID: 37875059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Ferredoxin-NADP
    Iyanagi T
    Antioxidants (Basel); 2022 Oct; 11(11):. PubMed ID: 36358515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin Reductase-Type Ferredoxin: NADP
    Lesanavičius M; Seo D; Čėnas N
    Antioxidants (Basel); 2022 May; 11(5):. PubMed ID: 35624864
    [No Abstract]   [Full Text] [Related]  

  • 11. Some fundamental insights into biological redox catalysis from the electrochemical characteristics of enzymes attached directly to electrodes.
    Armstrong FA
    Electrochim Acta; 2021 Sep; 390():138836. PubMed ID: 34511630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of
    Lesanavičius M; Aliverti A; Šarlauskas J; Čėnas N
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32370303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Annotation of a Presumed Nitronate Monoxygenase Reveals a New Class of NADH:Quinone Reductases.
    Ball J; Salvi F; Gadda G
    J Biol Chem; 2016 Sep; 291(40):21160-21170. PubMed ID: 27502282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coq6 is responsible for the C4-deamination reaction in coenzyme Q biosynthesis in Saccharomyces cerevisiae.
    Ozeir M; Pelosi L; Ismail A; Mellot-Draznieks C; Fontecave M; Pierrel F
    J Biol Chem; 2015 Oct; 290(40):24140-51. PubMed ID: 26260787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox reactions of the FAD-containing apoptosis-inducing factor (AIF) with quinoidal xenobiotics: a mechanistic study.
    Misevičienė L; Anusevičius Z; Sarlauskas J; Sevrioukova IF; Cėnas N
    Arch Biochem Biophys; 2011 Aug; 512(2):183-9. PubMed ID: 21664341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide.
    Song Y; Buettner GR
    Free Radic Biol Med; 2010 Sep; 49(6):919-62. PubMed ID: 20493944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant.
    Anusevicius Z; Miseviciene L; Medina M; Martinez-Julvez M; Gomez-Moreno C; Cenas N
    Arch Biochem Biophys; 2005 May; 437(2):144-50. PubMed ID: 15850554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119.
    Medina M; Martinez-Júlvez M; Hurley JK; Tollin G; Gómez-Moreno C
    Biochemistry; 1998 Mar; 37(9):2715-28. PubMed ID: 9485422
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.