BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 15850554)

  • 21. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox Properties of
    Lesanavičius M; Seo D; Maurutytė G; Čėnas N
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791410
    [No Abstract]   [Full Text] [Related]  

  • 23. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charge reversal mutations in a conserved acidic patch in Anabaena ferredoxin can attenuate or enhance electron transfer to ferredoxin:NADP+ reductase by altering protein/protein orientation within the intermediate complex.
    Hurley JK; Schmeits JL; Genzor C; Gómez-Moreno C; Tollin G
    Arch Biochem Biophys; 1996 Sep; 333(1):243-50. PubMed ID: 8806777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ferredoxin-NADP(H) reductase from Rhodobacter capsulatus: molecular structure and catalytic mechanism.
    Nogués I; Pérez-Dorado I; Frago S; Bittel C; Mayhew SG; Gómez-Moreno C; Hermoso JA; Medina M; Cortez N; Carrillo N
    Biochemistry; 2005 Sep; 44(35):11730-40. PubMed ID: 16128574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
    Olteanu H; Wolthers KR; Munro AW; Scrutton NS; Banerjee R
    Biochemistry; 2004 Feb; 43(7):1988-97. PubMed ID: 14967039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anabaena flavodoxin as an electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of flavodoxin residues in protein-protein interaction and electron transfer.
    Nogués I; Hervás M; Peregrina JR; Navarro JA; de la Rosa MA; Gómez-Moreno C; Medina M
    Biochemistry; 2005 Jan; 44(1):97-104. PubMed ID: 15628849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates.
    Faro M; Frago S; Mayoral T; Hermoso JA; Sanz-Aparicio J; Gómez-Moreno C; Medina M
    Eur J Biochem; 2002 Oct; 269(20):4938-47. PubMed ID: 12383252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron transfer to ferredoxin.
    Martínez-Júlvez M; Nogués I; Faro M; Hurley JK; Brodie TB; Mayoral T; Sanz-Aparicio J; Hermoso JA; Stankovich MT; Medina M; Tollin G; Gómez-Moreno C
    J Biol Chem; 2001 Jul; 276(29):27498-510. PubMed ID: 11342548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of the hydride transfer between Anabaena Tyr303Ser FNR(rd)/FNR(ox) and NADP+/H. A combined pre-steady-state kinetic/ensemble-averaged transition-state theory with multidimensional tunneling study.
    Lans I; Peregrina JR; Medina M; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Phys Chem B; 2010 Mar; 114(9):3368-79. PubMed ID: 20163096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of the catalytic role of Glu301 in Anabaena PCC 7119 ferredoxin-NADP+ reductase revealed by x-ray crystallography.
    Mayoral T; Medina M; Sanz-Aparicio J; Gómez-Moreno C; Hermoso JA
    Proteins; 2000 Jan; 38(1):60-9. PubMed ID: 10651039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein-protein interactions.
    Goñi G; Serrano A; Frago S; Hervás M; Peregrina JR; De la Rosa MA; Gómez-Moreno C; Navarro JA; Medina M
    Biochemistry; 2008 Jan; 47(4):1207-17. PubMed ID: 18177021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct computer simulation of ferredoxin and FNR complex formation in solution.
    Kovalenko IB; Diakonova AN; Abaturova AM; Riznichenko GY; Rubin AB
    Phys Biol; 2010 May; 7(2):026001. PubMed ID: 20453296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of serine 96 in the catalytic mechanism of ferredoxin-NADP+ reductase: structure--function relationship as studied by site-directed mutagenesis and X-ray crystallography.
    Aliverti A; Bruns CM; Pandini VE; Karplus PA; Vanoni MA; Curti B; Zanetti G
    Biochemistry; 1995 Jul; 34(26):8371-9. PubMed ID: 7677850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Kinetics of adrenodoxin reductase oxidation by non-physiologic electron acceptors].
    Chenas NK; Martsinkiavichene IA; Kulis IuIu; Usanov SA
    Biokhimiia; 1987 Apr; 52(4):643-9. PubMed ID: 3593793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain.
    Byrdin M; Villette S; Eker AP; Brettel K
    Biochemistry; 2007 Sep; 46(35):10072-7. PubMed ID: 17696363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP+-reductase.
    Peregrina JR; Sánchez-Azqueta A; Herguedas B; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2010 Sep; 1797(9):1638-46. PubMed ID: 20471952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.