BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15850787)

  • 41. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signaling via the angiotensin II type AT1 receptor.
    Godeny MD; Sayyah J; VonDerLinden D; Johns M; Ostrov DA; Caldwell-Busby J; Sayeski PP
    Cell Signal; 2007 Mar; 19(3):600-9. PubMed ID: 17027227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta.
    Pariser H; Perez-Pinera P; Ezquerra L; Herradon G; Deuel TF
    Biochem Biophys Res Commun; 2005 Sep; 335(1):232-9. PubMed ID: 16105548
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Receptor protein tyrosine phosphatases in nervous system development.
    Johnson KG; Van Vactor D
    Physiol Rev; 2003 Jan; 83(1):1-24. PubMed ID: 12506125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human platelet 12-lipoxygenase, new findings about its activity, membrane binding and low-resolution structure.
    Aleem AM; Jankun J; Dignam JD; Walther M; Kühn H; Svergun DI; Skrzypczak-Jankun E
    J Mol Biol; 2008 Feb; 376(1):193-209. PubMed ID: 18155727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cysteine residues are critical for chemokine receptor CXCR2 functional properties.
    Limatola C; Di Bartolomeo S; Catalano M; Trettel F; Fucile S; Castellani L; Eusebi F
    Exp Cell Res; 2005 Jul; 307(1):65-75. PubMed ID: 15922727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of a protein tyrosine phosphatase using mesoporous oxides.
    Kapoor S; Girish TS; Mandal SS; Gopal B; Bhattacharyya AJ
    J Phys Chem B; 2010 Mar; 114(9):3117-21. PubMed ID: 20163174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermolecular cross-linking of Na+-Ca2+ exchanger proteins: evidence for dimer formation.
    Ren X; Nicoll DA; Galang G; Philipson KD
    Biochemistry; 2008 Jun; 47(22):6081-7. PubMed ID: 18465877
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule.
    Holm D; Fink DR; Grønlund J; Hansen S; Holmskov U
    Mol Immunol; 2009 May; 46(8-9):1663-72. PubMed ID: 19297026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of pathogenic cysteine mutations on FGFR3 transmembrane domain dimerization in detergents and lipid bilayers.
    You M; Spangler J; Li E; Han X; Ghosh P; Hristova K
    Biochemistry; 2007 Oct; 46(39):11039-46. PubMed ID: 17845056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineered hybrid dimers: tracking the activation pathway of caspase-7.
    Denault JB; Békés M; Scott FL; Sexton KM; Bogyo M; Salvesen GS
    Mol Cell; 2006 Aug; 23(4):523-33. PubMed ID: 16916640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of human NTPDase 2 by modification of an intramembrane cysteine by p-chloromercuriphenylsulfonate and oxidative cross-linking of the transmembrane domains.
    Chiang WC; Knowles AF
    Biochemistry; 2008 Aug; 47(33):8775-85. PubMed ID: 18656957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autoactivation of human ADAM8: a novel pre-processing step is required for catalytic activity.
    Hall T; Leone JW; Wiese JF; Griggs DW; Pegg LE; Pauley AM; Tomasselli AG; Zack MD
    Biosci Rep; 2009 Aug; 29(4):217-28. PubMed ID: 18811590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha.
    Jiang G; den Hertog J; Su J; Noel J; Sap J; Hunter T
    Nature; 1999 Oct; 401(6753):606-10. PubMed ID: 10524630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intersubunit and domain interactions of the meprin B metalloproteinase. Disulfide bonds and protein-protein interactions in the MAM and TRAF domains.
    Ishmael FT; Shier VK; Ishmael SS; Bond JS
    J Biol Chem; 2005 Apr; 280(14):13895-901. PubMed ID: 15695509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-resolution structure and fluorescence anisotropy analysis of protein tyrosine phosphatase eta catalytic domain.
    Matozo HC; Santos MA; de Oliveira Neto M; Bleicher L; Lima LM; Iuliano R; Fusco A; Polikarpov I
    Biophys J; 2007 Jun; 92(12):4424-32. PubMed ID: 17400699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intramolecular interactions between the juxtamembrane domain and phosphatase domains of receptor protein-tyrosine phosphatase RPTPmu. Regulation of catalytic activity.
    Feiken E; van Etten I; Gebbink MF; Moolenaar WH; Zondag GC
    J Biol Chem; 2000 May; 275(20):15350-6. PubMed ID: 10809770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by Cys --> Ser mutations at Cys101 and Cys236.
    Pace AJ; Gama L; Breitwieser GE
    J Biol Chem; 1999 Apr; 274(17):11629-34. PubMed ID: 10206973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization.
    Bilwes AM; den Hertog J; Hunter T; Noel JP
    Nature; 1996 Aug; 382(6591):555-9. PubMed ID: 8700232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Receptor protein-tyrosine phosphatase dimerization.
    den Hertog J; van der Wijk T; Tertoolen LG; Blanchetot C
    Methods Enzymol; 2003; 366():224-40. PubMed ID: 14674252
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.