These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15850970)

  • 1. Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice.
    Kodama N; Murata Y; Asakawa A; Inui A; Hayashi M; Sakai N; Nanba H
    Nutrition; 2005 May; 21(5):624-9. PubMed ID: 15850970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of cytotoxicity of NK cells by D-Fraction, a polysaccharide from Grifola frondosa.
    Kodama N; Asakawa A; Inui A; Masuda Y; Nanba H
    Oncol Rep; 2005 Mar; 13(3):497-502. PubMed ID: 15706424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble β-glucan from Grifola frondosa induces tumor regression in synergy with TLR9 agonist via dendritic cell-mediated immunity.
    Masuda Y; Nawa D; Nakayama Y; Konishi M; Nanba H
    J Leukoc Biol; 2015 Dec; 98(6):1015-25. PubMed ID: 26297795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and antitumor effect of a novel polysaccharide from Grifola frondosa.
    Masuda Y; Matsumoto A; Toida T; Oikawa T; Ito K; Nanba H
    J Agric Food Chem; 2009 Nov; 57(21):10143-9. PubMed ID: 19839588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maitake beta-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice.
    Masuda Y; Inoue M; Miyata A; Mizuno S; Nanba H
    Int Immunopharmacol; 2009 May; 9(5):620-6. PubMed ID: 19249389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Administration of a polysaccharide from Grifola frondosa stimulates immune function of normal mice.
    Kodama N; Murata Y; Nanba H
    J Med Food; 2004; 7(2):141-5. PubMed ID: 15298759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic cells coinjected with tumor cells treated with an anticancer drug to induce tumor rejection.
    Inoue N; Yamasaki S; Kondo K; Kan T; Furumoto K; Imamura M
    Surg Today; 2003; 33(4):269-76. PubMed ID: 12707821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cytotoxic effect of oncolytic virus combined with mitomycin against human bladder cancer cells in vitro and in vivo].
    Zhao GZ; Tan WL; Zheng SB; Wu YD; Xie Y; Zhu WH
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Nov; 26(11):1623-5, 1628. PubMed ID: 17121717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP).
    Shin HJ; Kim YS; Kwak YS; Song YB; Kim YS; Park JD
    Planta Med; 2004 Nov; 70(11):1033-8. PubMed ID: 15549658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of IgG-Fc-mitomycin C conjugate on cancer cells].
    Baba E
    Hokkaido Igaku Zasshi; 1996 Mar; 71(2):271-81. PubMed ID: 8641681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Synergistic antitumor effect of sodium caffeate and mitomycin].
    Xu F; Song DQ; Zhen YS
    Yao Xue Xue Bao; 2002 Jun; 37(6):405-8. PubMed ID: 12579792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma.
    Kato Y; Yoshimura K; Shin T; Verheul H; Hammers H; Sanni TB; Salumbides BC; Van Erp K; Schulick R; Pili R
    Clin Cancer Res; 2007 Aug; 13(15 Pt 1):4538-46. PubMed ID: 17671140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth inhibition of human hepatocellular carcinoma xenograft in nude mice by combined treatment with human cytokine-induced killer cells and chemotherapy].
    Shi M; Yao L; Wang FS; Lei ZY; Zhang B; Li WL; Liu JC; Tang ZR; Zhou GD
    Zhonghua Zhong Liu Za Zhi; 2004 Aug; 26(8):465-8. PubMed ID: 15555334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-specific synergistic therapy of mitomycin C: modulation of bioreductive activation.
    Sakamoto N; Toge T; Nishiyama M
    Hiroshima J Med Sci; 1997 Jun; 46(2):67-73. PubMed ID: 9232934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral administration of soluble β-glucans extracted from Grifola frondosa induces systemic antitumor immune response and decreases immunosuppression in tumor-bearing mice.
    Masuda Y; Inoue H; Ohta H; Miyake A; Konishi M; Nanba H
    Int J Cancer; 2013 Jul; 133(1):108-19. PubMed ID: 23280601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a chemically sulfated polysaccharide derived from Grifola frondosa and its potential biological activities.
    Nie X; Shi B; Ding Y; Tao W
    Int J Biol Macromol; 2006 Nov; 39(4-5):228-33. PubMed ID: 16822541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiation of mitomycin C and porfiromycin antitumor activity in solid tumor models by recombinant human interleukin 1 alpha.
    Braunschweiger PG; Jones SA; Johnson CS; Furmanski P
    Cancer Res; 1991 Oct; 51(20):5454-60. PubMed ID: 1913664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential antitumor activity of a low-molecular-weight protein fraction from Grifola frondosa through enhancement of cytokine production.
    Kodama N; Mizuno S; Nanba H; Saito N
    J Med Food; 2010 Feb; 13(1):20-30. PubMed ID: 20136432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Induction of activated macrophages by intraperitoneal injection of mitomycin C in mice and rats].
    Ogura T
    Gan To Kagaku Ryoho; 1986 Mar; 13(3 Pt 2):689-96. PubMed ID: 3083782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of antitumor immunity in tumor-bearing mice by a degraded D-manno-D-glucan (DMG), a new antitumor polysaccharide.
    Nakajima H; Kita Y; Hashimoto S; Tsukada W; Abe S; Mizuno D
    Jpn J Exp Med; 1983 Dec; 53(6):281-8. PubMed ID: 6680757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.