These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15851241)

  • 1. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia.
    Rodríguez B; Tice BM; Eason JC; Aguel F; Trayanova N
    Heart Rhythm; 2004 Dec; 1(6):695-703. PubMed ID: 15851241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acute global ischemia on the upper limit of vulnerability: a simulation study.
    Rodríguez B; Tice BM; Eason JC; Aguel F; Ferrero JM; Trayanova N
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2078-88. PubMed ID: 14751853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vulnerability to electric shocks in the regionally-ischemic ventricles.
    Rodríguez B; Tice B; Blake R; Gavaghan D; Trayanova N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2280-3. PubMed ID: 17946101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of transmural ventricular heterogeneities in cardiac vulnerability to electric shocks.
    Maharaj T; Blake R; Trayanova N; Gavaghan D; Rodriguez B
    Prog Biophys Mol Biol; 2008; 96(1-3):321-38. PubMed ID: 17915299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shock-induced dispersion of ventricular repolarization: implications for the induction of ventricular fibrillation and the upper limit of vulnerability.
    Behrens S; Li C; Fabritz CL; Kirchhof PF; Franz MR
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):998-1008. PubMed ID: 9300297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lidocaine on shock-induced vulnerability.
    Li L; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S237-48. PubMed ID: 14760929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of ventricular fibrillation by T-wave field-shocks in the isolated perfused rabbit heart: role of nonuniform shock responses.
    Kirchhof PF; Fabritz CL; Behrens S; Franz MR
    Basic Res Cardiol; 1997 Feb; 92(1):35-44. PubMed ID: 9062650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of shock-induced arrhythmogenesis during acute global ischemia.
    Cheng Y; Mowrey KA; Nikolski V; Tchou PJ; Efimov IR
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2141-51. PubMed ID: 12003822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrhythmogenic changes in action potential configuration in the ventricle induced by DC shocks.
    Kodama I; Sakuma I; Shibata N; Honjo H; Toyama J
    J Electrocardiol; 1999; 32 Suppl():92-9. PubMed ID: 10688309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmural electrophysiological heterogeneities in action potential duration increase the upper limit of vulnerability.
    Maharaj T; Rodriguez B; Blake R; Trayanova NA; Gavaghan DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4043-6. PubMed ID: 17946217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual electrode-induced reexcitation: A mechanism of defibrillation.
    Cheng Y; Mowrey KA; Van Wagoner DR; Tchou PJ; Efimov IR
    Circ Res; 1999 Nov; 85(11):1056-66. PubMed ID: 10571537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone.
    Rantner LJ; Arevalo HJ; Constantino JL; Efimov IR; Plank G; Trayanova NA
    J Physiol; 2012 Sep; 590(18):4537-51. PubMed ID: 22586222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of myocardial ischemia on ventricular fibrillation inducibility and defibrillation efficacy.
    Behrens S; Li C; Franz MR
    J Am Coll Cardiol; 1997 Mar; 29(4):817-24. PubMed ID: 9091529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defibrillation of the heart: insights into mechanisms from modelling studies.
    Trayanova N
    Exp Physiol; 2006 Mar; 91(2):323-37. PubMed ID: 16469820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refractoriness of cardiac muscle as affected by intercalated disks: a model study implications for fibrillation and defibrillation.
    Haas HG; Solchenbach K
    Gen Physiol Biophys; 2004 Jun; 23(2):133-71. PubMed ID: 15696857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the relationship between preshock state and virtual electrode polarization-induced propagated graded responses resulting in arrhythmia induction.
    Bourn DW; Gray RA; Trayanova NA
    Heart Rhythm; 2006 May; 3(5):583-95. PubMed ID: 16648066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.