These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15851241)

  • 21. In silico investigation of electrically silent acute cardiac ischemia in the human ventricles.
    Wilhelms M; Dössel O; Seemann G
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2961-4. PubMed ID: 21672673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of mechanoelectric feedback in vulnerability to electric shock.
    Li W; Gurev V; McCulloch AD; Trayanova NA
    Prog Biophys Mol Biol; 2008; 97(2-3):461-78. PubMed ID: 18374394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study for relevance of the acute myocardial ischemia to arrhythmia by the optical mapping method.
    Yang Z; Zhang H; Kong S; Yue XF; Jin YB; Jin J; Huang YC
    Physiol Meas; 2007 May; 28(5):481-8. PubMed ID: 17470982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ischemic modulation of vulnerable period and the effects of pharmacological treatment of ischemia-induced arrhythmias: a simulation study.
    Cimponeriu A; Starmer CF; Bezerianos A
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):168-77. PubMed ID: 12665030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of cellular uncoupling in arrhythmogenesis in ischemia phase 1B.
    Jie X; Rodriguez B; Trayanova N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2272-5. PubMed ID: 17945702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postrepolarization refractoriness in acute ischemia and after antiarrhythmic drug administration: action potential duration is not always an index of the refractory period.
    Coronel R; Janse MJ; Opthof T; Wilde AA; Taggart P
    Heart Rhythm; 2012 Jun; 9(6):977-82. PubMed ID: 22293142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation.
    Qu F; Li L; Nikolski VP; Sharma V; Efimov IR
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H569-77. PubMed ID: 15792989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relevance of ventricular electrical dispersion to arrhythmogenesis in ischemic myocardium--a simulation study.
    Zhang H; Zhang ZX; Yang L; Jin YB; Huang YZ
    Gen Physiol Biophys; 2005 Dec; 24(4):365-80. PubMed ID: 16474183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The vulnerable period for low and high energy T-wave shocks: role of dispersion of repolarisation and effect of d-sotalol.
    Kirchhof PF; Fabritz CL; Zabel M; Franz MR
    Cardiovasc Res; 1996 Jun; 31(6):953-62. PubMed ID: 8759252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
    Ashihara T; Constantino J; Trayanova NA
    Circ Res; 2008 Mar; 102(6):737-45. PubMed ID: 18218982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic enquiry into the effect of increased pacing rate on the upper limit of vulnerability.
    Bourn DW; Maleckar MM; Rodriguez B; Trayanova NA
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1333-48. PubMed ID: 16766348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arrhythmogenesis in the heart: Multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity.
    Arevalo H; Rodriguez B; Trayanova N
    Chaos; 2007 Mar; 17(1):015103. PubMed ID: 17411260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arrhythmia Vulnerability in Diabetic Cardiac Tissue is Species-Dependent: Effects of I
    Ghazanfari A; Vigmond E; Nygren A
    Cardiovasc Eng Technol; 2017 Dec; 8(4):527-538. PubMed ID: 28656565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion.
    Parker KK; Lavelle JA; Taylor LK; Wang Z; Hansen DE
    J Appl Physiol (1985); 2004 Jul; 97(1):377-83. PubMed ID: 15220320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart.
    Cheng Y; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2000 Sep; 11(9):998-1007. PubMed ID: 11021470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ischemia-induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation.
    Cascio WE; Yang H; Muller-Borer BJ; Johnson TA
    J Electrocardiol; 2005 Oct; 38(4 Suppl):55-9. PubMed ID: 16226075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ST segment depression: the possible role of global repolarization dynamics.
    Hopenfeld B
    Biomed Eng Online; 2007 Feb; 6():6. PubMed ID: 17291348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences between left and right ventricular anatomy determine the types of reentrant circuits induced by an external electric shock. A rabbit heart simulation study.
    Rodríguez B; Eason JC; Trayanova N
    Prog Biophys Mol Biol; 2006; 90(1-3):399-413. PubMed ID: 16055175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of pinacidil on reentrant arrhythmias generated during acute regional ischemia: a simulation study.
    Trénor B; Ferrero JM; Rodríguez B; Montilla F
    Ann Biomed Eng; 2005 Jul; 33(7):897-906. PubMed ID: 16060529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vulnerability to reentry in a regionally ischemic tissue: a simulation study.
    Trénor B; Romero L; Ferrero JM; Sáiz J; Moltó G; Alonso JM
    Ann Biomed Eng; 2007 Oct; 35(10):1756-70. PubMed ID: 17616818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.