BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15851671)

  • 1. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
    Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates.
    Goldberg A; Wildman DE; Schmidt TR; Huttemann M; Goodman M; Weiss ML; Grossman LI
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5873-8. PubMed ID: 12716970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated evolution of the electron transport chain in anthropoid primates.
    Grossman LI; Wildman DE; Schmidt TR; Goodman M
    Trends Genet; 2004 Nov; 20(11):578-85. PubMed ID: 15475118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates.
    Uddin M; Opazo JC; Wildman DE; Sherwood CC; Hof PR; Goodman M; Grossman LI
    BMC Evol Biol; 2008 Jan; 8():8. PubMed ID: 18197981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of aerobic energy metabolism in primates.
    Grossman LI; Schmidt TR; Wildman DE; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):26-36. PubMed ID: 11161739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid nonsynonymous evolution of the iron-sulfur protein in anthropoid primates.
    Doan JW; Schmidt TR; Wildman DE; Goodman M; Weiss ML; Grossman LI
    J Bioenerg Biomembr; 2005 Feb; 37(1):35-41. PubMed ID: 15906147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing hybrid incompatibilities to single amino acid substitutions.
    Harrison JS; Burton RS
    Mol Biol Evol; 2006 Mar; 23(3):559-64. PubMed ID: 16280539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of eutherian cytochrome c oxidase subunit II: heterogeneous rates of protein evolution and altered interaction with cytochrome c.
    Adkins RM; Honeycutt RL; Disotell TR
    Mol Biol Evol; 1996 Dec; 13(10):1393-404. PubMed ID: 8952084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the primate cytochrome c oxidase subunit II gene.
    Adkins RM; Honeycutt RL
    J Mol Evol; 1994 Mar; 38(3):215-31. PubMed ID: 8006990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new model for the evolution of carnivory in the bladderwort plant (utricularia): adaptive changes in cytochrome C oxidase (COX) provide respiratory power.
    Laakkonen L; Jobson RW; Albert VA
    Plant Biol (Stuttg); 2006 Nov; 8(6):758-64. PubMed ID: 17203431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near the enzyme's cytochrome c (substrate) binding site.
    Alleyne T; Ignacio DN; Sampson VB; Ashe D; Wilson M
    Biotechnol Appl Biochem; 2017 Sep; 64(5):677-685. PubMed ID: 27489224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase.
    Schmidt TR; Wu W; Goodman M; Grossman LI
    Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.
    Pierron D; Opazo JC; Heiske M; Papper Z; Uddin M; Chand G; Wildman DE; Romero R; Goodman M; Grossman LI
    PLoS One; 2011; 6(10):e26269. PubMed ID: 22028846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection.
    Maston GA; Ruvolo M
    Mol Biol Evol; 2002 Mar; 19(3):320-35. PubMed ID: 11861891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adaptive evolution of the Homo mitochondrial genome].
    Maliarchuk BA
    Mol Biol (Mosk); 2011; 45(5):845-50. PubMed ID: 22393781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution at the cytochrome oxidase subunit 2 gene among divergent populations of the intertidal copepod, Tigriopus californicus.
    Rawson PD; Burton RS
    J Mol Evol; 2006 Jun; 62(6):753-64. PubMed ID: 16752213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid replacement is rapid in primates for the mature polypeptides of COX subunits, but not for their targeting presequences.
    Schmidt TR; Goodman M; Grossman LI
    Gene; 2002 Mar; 286(1):13-9. PubMed ID: 11943455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.