BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15852552)

  • 21. Bone remodeling around total hip implants.
    Smolinski P; Rubash HE
    Crit Rev Biomed Eng; 1992; 20(5-6):461-83. PubMed ID: 1486786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of two numerical approaches for bone remodelling.
    Chen G; Pettet G; Pearcy M; McElwain DL
    Med Eng Phys; 2007 Jan; 29(1):134-9. PubMed ID: 16458567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation of computed finite element stresses to bone density after remodeling around cementless femoral implants.
    Skinner HB; Kilgus DJ; Keyak J; Shimaoka EE; Kim AS; Tipton JS
    Clin Orthop Relat Res; 1994 Aug; (305):178-89. PubMed ID: 8050227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Simulation through the method of finite element of alendronate in a model of bone remodeling based on damage mechanics].
    Zeman ME; García JM; Doblaré M
    Acta Cient Venez; 2003; 54(1):36-42. PubMed ID: 14515765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis.
    Tada S; Stegaroiu R; Kitamura E; Miyakawa O; Kusakari H
    Int J Oral Maxillofac Implants; 2003; 18(3):357-68. PubMed ID: 12814310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Numeric simulation of functional remodeling of the anterior alveolar bone].
    Wang WF; Xin HT; Zang SL; Ding J
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Apr; 47(4):229-32. PubMed ID: 22800702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromotion and stress distribution of immediate loaded implants: a finite element analysis.
    Fazel A; Aalai S; Rismanchian M; Sadr-Eshkevari P
    Clin Implant Dent Relat Res; 2009 Dec; 11(4):267-71. PubMed ID: 18783413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in collision detection and non-linear finite mixed element modelling for improved soft tissue simulation in craniomaxillofacial surgical planning.
    Wang S; Yang J; Gee JC
    Int J Med Robot; 2010 Mar; 6(1):28-41. PubMed ID: 19946886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An anisotropic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies.
    Garcia JM; Martínez MA; Doblaré M
    Comput Methods Biomech Biomed Engin; 2001; 4(4):355-77. PubMed ID: 11328645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements.
    Stadelmann VA; Hocke J; Verhelle J; Forster V; Merlini F; Terrier A; Pioletti DP
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):95-100. PubMed ID: 18651261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new approach for assigning bone material properties from CT images into finite element models.
    Chen G; Schmutz B; Epari D; Rathnayaka K; Ibrahim S; Schuetz MA; Pearcy MJ
    J Biomech; 2010 Mar; 43(5):1011-5. PubMed ID: 19942221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical bone development under the growth plate is regulated by mechanical load transfer.
    Tanck E; Hannink G; Ruimerman R; Buma P; Burger EH; Huiskes R
    J Anat; 2006 Jan; 208(1):73-9. PubMed ID: 16420380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant-bone interfacial conditions.
    Mondal S; Ghosh R
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1247-1257. PubMed ID: 31497997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a finite element model of the tibia for short-duration high-force axial impact loading.
    Quenneville CE; Dunning CE
    Comput Methods Biomech Biomed Engin; 2011 Feb; 14(2):205-12. PubMed ID: 21337226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.