These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 15852979)
1. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
2. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax]. Han Z; Hu X; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):945-50. PubMed ID: 16110677 [TBL] [Abstract][Full Text] [Related]
3. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150 [TBL] [Abstract][Full Text] [Related]
6. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants]. Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843 [TBL] [Abstract][Full Text] [Related]
7. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
8. Effects of cadmium on mercury accumulation and transformation by Arundo donax L. Li X; Zhao L; Teng Y; Luo Y; Zhao Q Environ Sci Pollut Res Int; 2023 May; 30(22):62461-62469. PubMed ID: 36943572 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
10. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy. Yu S; Sheng L; Zhang C; Deng H Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():88-91. PubMed ID: 29524747 [TBL] [Abstract][Full Text] [Related]
11. Insights on phytoremediation of chromium from tannery wastewater contaminated soil. Gebretekle BG; Teklu Gebretsadik T; Mekonnen KN; Asgedom AG Int J Phytoremediation; 2024; 26(12):1923-1931. PubMed ID: 38900152 [TBL] [Abstract][Full Text] [Related]
12. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt. Galal TM; Shehata HS Int J Phytoremediation; 2016 Dec; 18(12):1221-30. PubMed ID: 27257886 [TBL] [Abstract][Full Text] [Related]
13. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
14. Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Shahid M; Arshad M; Kaemmerer M; Pinelli E; Probst A; Baque D; Pradere P; Dumat C Int J Phytoremediation; 2012; 14(5):493-505. PubMed ID: 22567727 [TBL] [Abstract][Full Text] [Related]
15. Facilitation of Morus alba L. intercropped with Sedum alfredii H. and Arundo donax L. on soil contaminated with potentially toxic metals. Zeng P; Guo Z; Xiao X; Peng C; Liao B; Zhou H; Gu J Chemosphere; 2022 Mar; 290():133107. PubMed ID: 34848227 [TBL] [Abstract][Full Text] [Related]
16. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species. Yang JX; Guo QJ; Yang J; Zhou XY; Ren HY; Zhang HZ; Xu RX; Wang XD; Peters M; Zhu GX; Wei RF; Tian LY; Han XK Int J Phytoremediation; 2016; 18(3):269-77. PubMed ID: 26505322 [TBL] [Abstract][Full Text] [Related]
17. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Sarathambal C; Khankhane PJ; Gharde Y; Kumar B; Varun M; Arun S Int J Phytoremediation; 2017 Apr; 19(4):360-370. PubMed ID: 27592507 [TBL] [Abstract][Full Text] [Related]
18. Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system. Al Souki KS; Liné C; Louvel B; Waterlot C; Douay F; Pourrut B Ecotoxicol Environ Saf; 2020 Aug; 199():110654. PubMed ID: 32402897 [TBL] [Abstract][Full Text] [Related]
19. Metal accumulation in populations of Calamagrostis epigejos (L.) Roth from diverse anthropogenically degraded sites (SE Europe, Serbia). Ranđelović D; Jakovljević K; Mihailović N; Jovanović S Environ Monit Assess; 2018 Mar; 190(4):183. PubMed ID: 29500587 [TBL] [Abstract][Full Text] [Related]
20. Heavy metals removal from industrial wastewater of Biskra (Algeria) by Arundo donax and Phragmites australis. Badache S; Seghairi N Environ Monit Assess; 2024 Jul; 196(8):703. PubMed ID: 38967833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]